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The difference between us and a computer
is that the computer is blindingly stupid,

but is capable of being stupid many,
many million times a second.

— Douglas Adams





Eskerrak

Lehenik eta behin, nire eskerrik beroenak tesi honen zuzendariei, Eneko eta Gorka-
ri, etapa honetako pauso guztietan gidatu izanagatik, zuen ekarpen guztiengatik
eta nirekin pazientzia izateagatik. Momentu gozo eta latzenetan hor egon zarete
eta zuengandik ikasi dudanak ez dauka preziorik. Zuzendariekin batera, mila es-
ker Oier eta Aitorri astero lan honen garapenari tarte bat eskaintzeagatik. Pare-
gabeak izan zarete!

Ixakide guztiei, lan orduak arinagoak bihurtzeagatik eta eskua emateko beti
prest egoteagatik. Lagun ederrak topatu ditut talde honetan, behin eta berriro
topatu ditudanak eguneroko hamaiketako eta bazkal ordutan, (gehienbat Matia
kaleko) tabernetan, sagardotegietan, asteburuko eskapadetan, rokodromoan (ez
nuen espero bizitzan bat zapalduko nuenik...) etab. Mila esker esperientzi guzti
horiengatik, ziur nago gehiagotan parte hartzeko irrika ez dudala galduko.

318ko tropari, nire eguneroko lana arinagoa bihurtzeagatik. Bulegoa berotu
ez ezik, asko lagundu duzue taldean ni integratua sentiaraztearekin. 3D inprima-
gailua berriz martxan jartzea zaila iruditzen zait, baina alternatibaren bat bilatu
beharko dugu... 314koek krispeta-festa klandestinoak zituzten eta 313ko etorri
berriek baratze bat dute jada... ezin gara atzean gelditu!

Olia, Anar eta Iñigori, tesiak dakartzan alde ilunak argiztatzeagatik eta kan-
poan ondo gosaltzeari beste esanahi bat emateagatik.

I am also quite grateful to Frank Keller. Thank you for allowing me to col-
laborate and hosting me at the University of Edinburgh. My stay there widened
my view of how research can be carried out in different groups and it was an
invaluable experience.

Eranskin dedikatu bat sortzen ez badut arazoak izango ditudanez familiarteko
guztiak izendatzeko, agurtutzat eman zure burua (badakizu, familiako bazkari
gehienetan bezala). Mila esker denoi zuen animo eta hitz goxoengatik. Batez
ere, eskerrak nire gurasoei edozein gauzetarako beti laguntzeko prest egoteagatik,
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baita ordenagailuaren aurrean zer demontre egiten ari naizen ulertzeko interesa
erakustegatik ere. Tesia bukatu ondoren ez dut aitzakiarik izango Goienetxetik
gehiagotan ez pasatzeko!

Ezagutzen nauzuenek badakizue beti eskertzen ditudala mahai jokoez ingu-
ratutako solasaldiak eta behar baino aldagai ezezagun gehiago dituzten bidaiak.
Eskerrik asko horietan parte hartu duzuen guztiei.

Azkenik, eskerrak eman nahi dizkiet bereziki: Eneritzeri, tesiaren gora-behe-
retan lehenengo filan egoteagatik; Albari, mundua ikusteko eta bizitzeko era ezber-
dinak daudela erakusteagatik; eta Maiteri, bai Edinburgon eta baita Errenterin ere
gida gisa jokatzeagatik... ez ahaztu toaila!

Esker instituzionalak
Eusko Jaurlaritzako Hezkuntza Sailari, ikerketa-lan hau egiteko emandako ik-
ertzaileak prestatzeko bekarengatik, baita egonaldi internazionala burutzeko diru-
laguntzarengatik ere.
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Abstract

The fields of natural language processing (NLP) and computer vision (CV) have
lately emerged thanks to recent advancements in computational power, data quan-
tity, and an evergrowing research community. The bridge between NLP and CV
has also advanced, particularly in tasks requiring the grounding of textual and
visual modalities, such as visual question-answering (VQA) and text-to-image
generation. This paves the way for more sophisticated systems and applications
across various domains. Nevertheless, these systems still face weaknesses that
have no trivial solution.

The goal of this thesis is to explore two limitations of current Vision-and-
language models (VLMs): world knowledge integration and spatial reasoning.
This dissertation can be divided into two main parts, one for each limitation that
we tackle. In the first part, we verbalize images to better leverage world knowl-
edge that is implicitly encoded in language models. In contrast, in the second, we
exploit the generation of synthetic data from object annotations to aid the spatial
reasoning of both language models and text-to-image generators.

More in-depth, visio-linguistic tasks, such as VQA, usually need to reason
over an image by integrating world knowledge. As previous work has shown
that pre-trained language models encode this knowledge, we propose an unimodal
(text-only) approach by generating captions from images automatically and dis-
carding the image from the rest of the inference. We show that using only textual
representations to encode the language model’s input is especially effective for
VQA tasks requiring external knowledge. In addition, we show that our unimodal
approach outperforms VLMs of a comparable number of parameters, while we
also observe that both approaches are complementary regardless of the need for
world knowledge. Our qualitative analysis reveals that automatic captions often
fail to capture the information needed to answer the prompted question, which
seems to be balanced by the better inference ability of our unimodal model.
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Entering the field of spatial reasoning, we show that text-only language mod-
els can learn to ground spatial relations (left of or below) if they are provided with
explicit object locations and they are properly trained to leverage them. We feed
this spatial knowledge by using location tokens that represent bounding box in-
formation, which are extracted using an off-the-shelf object detector. In order to
learn how to link each spatial relation to different sets of location tokens, we de-
fine simple heuristics that specify whether a given relation is fulfilled or not, and
we use that signal to build a synthetic dataset and fine-tune language models. By
doing so, we set the new state-of-the-art for the VSR dataset, even improving the
performance of VLMs. Our analysis shows that our text-only language models
can generalize beyond the relations seen during training to some extent, learning
also more useful information than that encoded in the heuristics mentioned earlier.

We also tackle the task of text-to-image generation by following a similar ap-
proach. We hypothesize that current systems do not accurately depict spatial rela-
tions in generated images due to the lack of them in the training data. Therefore,
we introduce the Spatial Relation for Generation (SR4G) dataset, which contains:
synthetic captions composed of 14 different explicit spatial relations, 9 million
image-caption pairs for training, and more than 60 thousand captions for evalu-
ation. We also provide an unseen split in order to test generalization, with dif-
ferent sets of objects used during training, development and testing. We show
that fine-tuning two different Stable Diffusion models (denoted as SDSR4G) yields
significant improvements in the VISOR metric, an evaluation metric specifically
designed to check whether an image contains a specific spatial relation or not.
The improvement holds in the unseen split, showing that SDSR4G is able to gen-
eralize to unseen objects. This way, we improve the state-of-the-art with fewer
parameters and avoid complex architectures involving layout generation and large
language models.
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Laburpena

Hizkuntza naturalaren prozesamendua (NLP) eta konputagailu bidezko ikusmena-
ren (CV) alorrak asko hazi dira azkenaldian. Bultzada hau ordenagailuen kalkulu-
ahalmen eta eskuragarri dagoen datu kopuruaren hazkundeari esker lortu da, baita
etengabe hazten ari den ikerketa-komunitateari esker ere. NLP eta CV-ren arteko
zubian aurrerapenak lortu dira ere bai, batez ere testu eta ikusmen modalitateen oi-
narritzea eskatzen duten zereginetan, hala nola, ikusizko galdera-erantzute (VQA)
eta testuan baldintzatutako irudi sorkuntza. Horrek sistema eta aplikazio sofisti-
katuagoetarako bidea zabaltzen du hainbat domeinutan. Dena den, sistema hauek
konponbide errazik ez dituzten ahuleziak dituzte oraindik.

Tesi honen helburua egungo ikusizko hizkuntza-ereduen (VLM) bi ahulezi
aztertzea da: munduko ezagutzaren integrazioa eta arrazoinamendu espaziala.
Tesi hau bi zati nagusitan bana daiteke, jorratzen dugun ahulezi bakoitzeko ba-
na alegia. Lehenengo zatian, irudietatik goiburukoak sortzen ditugu hizkuntza-
ereduetan inplizituki kodetuta dagoen munduko ezagutza hobeto aprobetxatzeko.
Bigarrenean, aldiz, objektu anotazioetatik datu sintetikoak sortzen zentratu gara
arrazoinamendu espazialaren ikasketari laguntzeko, bai hizkuntza-ereduetan eta
baita testu bidezko irudi sortzaileetan ere.

Gehiago sakonduz, VQA bezalako ikusmen-testu atazetan ohikoa da irudi ba-
ten gaineko arrazoinamendua burutzea munduko ezagutza integratuz. Hizkuntza-
eredu aurrentrenatuek ezagutza hau kodetzen dutela erakutsi denez, modalitate
bakarra (testua soilik) erabiltzea proposatzen dugu, irudietatik goiburukoak au-
tomatikoki sortuz eta irudi bera gainerako inferentzietatik baztertuz. Hizkuntza-
ereduaren sarrera kodetzeko testua soilik erabiltzea bereziki eraginkorra dela era-
kusten dugu munduko ezagutza eskatzen duten VQA atazetarako. Horrez gain,
gure hurbilpen unimodalak pareko parametro kopuruak dituzten VLM-ak gaindi-
tzen dituela erakusten dugu. Bi aldaera hauek osagarriak direla antzeman dugu,
munduko ezagutza beharrak dituzten VQA atazekin eta ezagutza behar hori gabe-
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koekin ere bai. Gure analisi kualitatiboak goiburuko automatikoek galdera eran-
tzuteko behar den informazioa sarritan ez dutela jasotzen agerrarazten du. Hala
ere, gabezi hau inferentzia hobeagoak egiteko kapazitatearekin orekatzen dela di-
rudi.

Arrazoinamendu espazialaren alorrean sartuz, testua soilik jasotzen duten hiz-
kuntza-ereduek erlazio espazialak (ezkerrean edo azpian) oinarritzen ikas ditza-
ketela erakutsi dugu. Ikasketa hau burutzeko ezinbestekoa da objektuen kokapen
esplizituak ereduari ematea eta behar bezala prozesatzen ikasteko atazak erabil-
tzea. Gure kasuan, ezagutza espazial hori objektuen kaxa inguratzaileen infor-
mazioa kodetuz lortzen dugu token berezi batzuk erabiliz, hots, kokapen-tokenak.
Kokapen-token hauek publikoki eskuragarri dagoen objektu detektore bat erabi-
liz eskuratzen ditugu. Erlazio espazial bakoitza kokapen-token multzoekin lotzen
ikasteko, erlazio jakin bat betetzen den ala ez zehazten duten erregela sinpleak
definitzen ditugu. Erregela hauekin datu-multzo sintetiko bat eraiki dezakegu eta
hizkuntza-ereduak doitu. Horrela, VSR datu-multzoaren artearen egoera ezarri
dugu, VLM-en errendimendua hobetuz. Gure analisiak testua soilik erabiltzen
duten hizkuntza-ereduak entrenamenduan zehar ikusitako erlazioetatik haratago
orokortu dezaketela erakusten du hein batean, lehen aipatutako erregeletan kode-
tutakoa baino informazio baliagarriagoa ere ikasiz.

Testu bidezko irudi sorkuntza atazari ere aurre egiten diogu antzeko hurbilpen
bat jarraituz. Artearen egoerak ez ditu erlazio espazial esplizituak ondo irudi-
katzen eta, gure ustez, entrenamenduan erabiltzen diren datu-multzoetan hauen
agerpena urria delako. Hori dela eta, Spatial Relations for Generation edo SR4G
datu-multzoa aurkezten dugu. SR4G-ek 14 erlazio espazial esplizitu ezberdinez
osatutako goiburuko sintetikoak ditu, 9 milioi irudi-goiburuko pare definituz en-
trenamendurako eta 60K goiburuko baino gehiago ebaluatzeko. Gainera, datu-
multzoaren unseen bertsio bat definitu dugu, goiburukoetan objektu ezberdinak
zehazten direlarik entrenamendu, garapen eta ebaluazio azpimultzoetan. Stable
Diffusion ereduak SR4G datu-multzoan doitzeak (SDSR4G) hobekuntza nabarme-
nak ematen ditu VISOR metrikan, erlazio espazialak irudietan betetzen diren ala
ez neurtzen duen ebaluazio metrika automatikoa dena. Unseen bertsioan hobe-
kuntzak mantentzen dira, SDSR4G eredu doituak ikusten ez dituen objektuetara
orokortzeko gai dela erakutsiz. Horrela, artearen egoera hobetzen dugu parametro
gutxiago erabiliz eta arkitektura konplexuak saihestuz.
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1. CHAPTER

Introduction

This thesis belongs to the intersection of two academic fields: natural language
processing (NLP) and computer vision (CV). Both fields aim to endow machines
with human capabilities. In other words, while NLP enables language processing
and generation, CV allows machines to mimic sight and understand their sur-
roundings. This way, their intersection becomes intuitive, as people often reason
and talk about what they see. Nevertheless, the effective integration between vi-
sion and language by machines has historically been a challenge, as grounding
two different modalities, such as images and text, is still an open problem that has
mainly been mitigated thanks to brute force (e.g. massive amounts of data and
computational power).

This dissertation has been undertaken in the Ixa group inside the HiTZ re-
search centre at the University of the Basque Country. HiTZ is considered the
reference NLP research team in Spain and one of Europe’s top NLP research
centres. Since their beginnings, Ixa and HiTZ have been pioneers in develop-
ing NLP tools, paying special attention to the development of language tools for
Basque. Furthermore, the group participates in worldwide-level research projects,
contributing not only to Basque but also to many more languages.

Research in the Ixa group has mostly focused on text-only tasks until recently,
as current trends in multimodality have sparked new ideas to mix different modal-
ities in the field of NLP. That is the case of this dissertation, where we dive into
the limitations that current state-of-the-art vision-and-language models have, and
explore different approaches to solve them.
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1 INTRODUCTION

1.1 Motivation

The recent uproar in NLP has been achieved thanks to the emergence of language
models (LMs) and later on large language models (LLMs), gargantuan statistical
models that, due to their capacity, can achieve general-purpose language gener-
ation. Their capabilities of generating grammatically accurate and verbose text
with an apparent understanding of its semantics have convinced many that natural
language understanding (NLU) and even artificial general intelligence (AGI) are
near. This overreaction is fueled by the tendency of humans to add meaning and
intent where there is none (Bender et al. 2021), misleading NLP researchers and
the general public when interacting with LLM-based applications such as Chat-
GPT and Claude.

One key aspect of achieving NLU or AGI is to link language with sensory
data. As previously mentioned, humans communicate what they perceive in their
surroundings, which shapes our language. Multimodality is key to grounding lan-
guage in the real world, as it takes into account additional context beyond just text.
Without this grounding, language is not directly linked to the physical world, dis-
abling the model’s ability to understand or convey the meaning of what is being
said. The latest LLMs have started integrating different modalities, and visual sig-
nals are the most common due to the abundance of image-text pairs available on
the internet (e.g. captions of photographs). Therefore, these vision-and-language
models (VLMs) learn to solve visual reasoning, image captioning, and visual dia-
logue, among other tasks.

Figure 1.1 shows what state-of-the-art large VLMs like GPT-4o can do. In
this case, the user asks for information about an image with a bird, and the model
answers with a detailed description. This answer also includes world knowledge,
as it correctly identifies the species of the bird (an Eastern Yellow Robin) and
gives more information about its main habitat (Australia). In short, there is no
inaccuracy in its response and the question has been successfully answered.

Even though GPT-4o’s architecture, training, and inference procedures are un-
known to the public, we can expect that it has seen the prompted image alongside
text describing this bird during training, as this image was extracted from the
Wikipedia page of Eastern Yellow Robins.1 By ingesting massive amounts of
crawled data from the Internet, these large models have memorized plenty of it.
This makes their evaluation difficult, as discerning whether they memorized the
generated text or are generalizing becomes harder. Nevertheless, they also tend

1https://en.wikipedia.org/wiki/Eastern_yellow_robin. (accessed on 01/07/2024)
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1.1 MOTIVATION

1.1 Figure – Example of ChatGPT’s visual dialog capabilities. This version of
ChatGPT uses the multimodal GPT-4o model, accessed on 30/06/2024.

to hallucinate by generating plausible facts without linking them to evidence, a
major limitation of current language models.

Large VLMs show good zero-shot and few-shot capabilities, like unimodal
LLMs (Brown et al. 2020). However, both share limitations, such as the previ-
ously mentioned hallucinations. Even though VLMs show strong performance in
several tasks, such as object detection and image captioning, they struggle with
many others involving reasoning, knowledge retrieval, or compositional under-
standing. Research on these topics has recently emerged. For example, reasoning
is being tackled with Chain-of-Thought approaches (Wei et al. 2022c), and Re-
trieval Augmented Generation has become a standard for knowledge retrieval with
LLMs (Lewis et al. 2020; Gao et al. 2023).

It is worth mentioning that text-to-image generators also fall into the category
of VLMs. In other words, VLMs do not only cover models that generate just text

3
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What is the average lifespan of this 
bird species in captivity?     9 years

Is the hummingbird’s beak inside the 
flower?                                          No

1.2 Figure – Two examples of visual question-answering, where the goal is to
answer a question about a given image. A VLM able to solve the question to
the left needs to access knowledge about goldfinches. In contrast, locating and
assessing the relative positions between the beak and the flower is necessary for
the other.

but also images. As their name implies, they generate images conditioned on tex-
tual signals, which enables an intuitive way of generating visual representations
by giving a short description. Dall-E and Midjourney are two examples of popular
products that give this service. Therefore, grounding both modalities is needed for
the correct functionality of text-to-image models. They also share similar weak-
nesses compared to other VLMs, including spatial reasoning and compositional
understanding.

1.2 Goals and Research Lines
The main goal of this thesis is to explore the limitations of current VLMs and
develop new approaches to tackle them. We focus on two limitations: i) world
knowledge integration, where we explore different ways to better leverage the
implicit knowledge found in language models, and ii) spatial reasoning, where the
lack of grounded spatial relations in text corpora and vision-and-language datasets
is fought by generating synthetic data from object annotations. Figure 1.2 shows
visual question-answering (VQA) examples where these limitations are key to
solving them correctly. More specifically, our research lines are the following:
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1.2 GOALS AND RESEARCH LINES

[RL1] : The leverage of implicit knowledge found in language models with
different modalities. In this research line we have analyzed the use of vi-
sual features and/or textual representations to represent and reason about
an image on a VQA task with world knowledge needs. Existing state-of-
the-art systems focus on mixing different modalities including text, images,
graphs... to retrieve specific knowledge and give an answer.2 Our approach
has focused on better leveraging implicit knowledge encoded in the pre-
trained weights of LMs, instead of retrieving this knowledge from text cor-
pora or knowledge graphs.

[RL2] : Creation of synthetic datasets to enhance spatial reasoning capabili-
ties. The lack of explicit spatial relations in text corpora used to pre-train
VLMs hurts their capabilities to understand and perform several tasks cor-
rectly. We have aimed to use object annotations (e.g. object labels, at-
tributes, and bounding boxes) and hand-crafted heuristics to generate syn-
thetic data containing these relations. From this data, we have fine-tuned
LMs and text-to-image generators to enhance their ability to reason with
explicit spatial relations.

[RL2.1] : Development of text-only language models that reason better
with spatial relations. In this research line we have improved spa-
tial reasoning on text-only language models. By definition, unimodal
language models learn statistical language patterns without grounding
the text in the real world. We tackle this issue by verbalizing lay-
out information of images via location tokens, pairing them with their
respective spatial relations, and defining a training task to learn the
bridge between spatial relations and location tokens.

[RL2.2] : Development of text-to-image models that generate correct spa-
tial relations more consistently. Even if text-to-image generators use
image-text pairs to learn the task properly, they struggle to consistently
depict the spatial relations mentioned in the input caption. Assuming
that the lack of image-text pairs containing these relations during their
training process has a big role in this, we define a data generation pro-
cedure to fill the gap in data and fine-tune these models to show an
improvement in the generation of spatial relations.

2We are referring to the state-of-the-art of the first half of this dissertation (2020-2022), during
the development of this research line, as the advent of LLMs has changed this paradigm.
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1.3 Structure of the Thesis
This dissertation is written in two different languages: English and Basque. The
English written block is composed of Chapters 1, 2 and 6, whereas Chapters 3, 4
and 5 complete the Basque block.

English block: In Chapter 1, we begin by introducing the topic of this work
and the motivation behind it (Section 1.1), following it with its goals and the
explored research lines (Section 1.2). After discussing the structure of this docu-
ment (Section 1.3), we list all the scientific contributions made during the duration
of this thesis (Section 1.4). Subsequently, Chapter 2 dives into the related work
and building block in which this thesis has been established (Section 2.1). We
introduce VLMs and Diffusion Models (Section 2.2), and describe their current
limitations regarding spatial reasoning and world knowledge integration (Section
2.3). Finally, Chapter 6 presents our main contributions, conclusions, and new
lines of work that this thesis provides.

Basque block: This block contains the main work of this thesis, divided into 3
chapters. Chapter 3 provides our contributions regarding world knowledge inte-
gration by better leveraging the implicit knowledge found in language models on
Visual Question-answering tasks. Then, in Chapters 4 and 5, we shift the topic
to spatial reasoning, and utilize synthetic data to improve: i) spatial reasoning ca-
pabilities of text-only language models, and ii) the generation of explicit spatial
relations in text-to-image generation. All these chapters follow the same structure.
We start by elaborating on each work’s motivation and contributions. Then, we
focus on the methodology used to set up our experiments and carry them out with
the corresponding analysis. We conclude each chapter by summarizing its main
conclusions.

Note for non-Basque-speaking readers: The reader can check Appendix A to
read the original papers/preprints containing all chapters of the Basque block in
their recommended reading order.
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1.4 List of Scientific Contributions

In this section, we present the scientific contributions developed during my PhD
student years. This section is split into two parts. Firstly, we present the publica-
tions and preprints that build this manuscript. After that, we list the ones that are
not part of it.

1.4.1 Contributions that are part of the thesis

[A.1] Salaberria et al. (ESWA 2023) presented in Chapter 3

Salaberria A., Azkune G., Lopez de Lacalle O., Soroa A., and Agirre E.
(2023). Image Captioning for Effective Use of Language Models in Knowl-
edge Based Visual Question Answering. In Expert Systems with Applica-
tions.

Abstract: Integrating outside knowledge for reasoning in visio-linguistic tasks
such as visual question-answering (VQA) is an open problem.3 Given that pre-
trained language models have been shown to include world knowledge, we pro-
pose to use an unimodal (text-only) training and inference procedure based on
automatic off-the-shelf captioning of images and trained language models. More
specifically, we verbalize the image contents and allow language models to bet-
ter leverage their implicit knowledge to solve knowledge-intensive tasks. Focus-
ing on a visual question-answering task which requires external knowledge (OK-
VQA), our contributions are (i) a text-only model that outperforms pre-trained
multimodal (image-text) models of a comparable number of parameters; (ii) con-
firmation that our text-only method is especially effective for tasks requiring ex-
ternal knowledge, as it is less effective in standard a VQA task (VQA 2.0); and
(iii) our method attains results in the state-of-the-art when increasing the size of
the language model. We also significantly outperform current multimodal sys-
tems, even though augmented with external knowledge. Our qualitative analysis
of OK-VQA reveals that automatic captions often fail to capture relevant informa-
tion in the images, which seems to be balanced by the better inference ability of
the text-only language models. Our work opens up possibilities to further improve
inference in visio-linguistic tasks.

3In this document we use outside/external/world knowledge interchangeably.
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1 INTRODUCTION

[A.2] Azkune et al. (NN 2024) presented in Chapter 4

Azkune G., Salaberria A., and Agirre E. (2024). Grounding Spatial Rela-
tions in Text-only Language Models. In Neural Networks.

Abstract: This paper shows that text-only Language Models (LM) can learn to
ground spatial relations like left of or below if they are provided with explicit
location information of objects and they are properly trained to leverage those
locations. We perform experiments on a verbalized version of the Visual Spa-
tial Reasoning (VSR) dataset, where images are coupled with textual statements
which contain real or fake spatial relations between two objects of the image. We
verbalize the images using an off-the-shelf object detector, adding location tokens
to every object label to represent their bounding boxes in textual form. Given
the small size of VSR, we do not observe any improvement when using loca-
tions, but pretraining the LM over a synthetic dataset automatically derived by
us improves results significantly when using location tokens. We thus show that
locations allow LMs to ground spatial relations, with our text-only LMs outper-
forming Vision-and-language Models and setting the new state-of-the-art for the
VSR dataset. Our analysis shows that our text-only LMs can generalize beyond
the relations seen in the synthetic dataset to some extent, learning also more useful
information than that encoded in the spatial rules we used to create the synthetic
dataset itself.

[A.3] Salaberria et al. (Preprint 2024) presented in Chapter 5

Salaberria A., Azkune G., Lopez de Lacalle O., Soroa A., Agirre E., and
Keller F. (2024). Improving Explicit Spatial Relationships in T2I through
an Automatically Derived Dataset. arXiv preprint arXiv:2403.00587.

Abstract: Existing work has observed that current text-to-image systems do not
accurately reflect explicit spatial relations between objects such as left of or below.
We hypothesize that this is because explicit spatial relations rarely appear in the
image captions used to train these models. We propose an automatic method that,
given existing images, generates synthetic captions that contain 14 explicit spatial
relations. We introduce the Spatial Relation for Generation (SR4G) dataset, which
contains 9.9 million image-caption pairs for training, and more than 60 thousand
captions for evaluation. In order to test generalization we also provide an unseen
split, where the set of objects in the train and test captions are disjoint. SR4G is
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the first dataset that can be used to spatially fine-tune text-to-image systems. We
show that fine-tuning two different Stable Diffusion models (denoted as SDSR4G)
yields up to 9 points improvements in the VISOR metric. The improvement holds
in the unseen split, showing that SDSR4G is able to generalize to unseen objects.
SDSR4G improves the state-of-the-art with fewer parameters and avoids complex
architectures. Our analysis shows that improvement is consistent for all relations.

1.4.2 Contributions outside the thesis

Lopez de Lacalle et al. (ECAI 2020)

Lopez de Lacalle O., Salaberria A., Soroa A., Azkune G., and Agirre E.
(2020). Evaluating multimodal representations on visual semantic textual
similarity. In Proceedings of the 24th European Conference on Artificial
Intelligence (ECAI 2020).

Salaberria et al. (IkerGazte 2021)

Salaberria A., Campos J. A., García I., and Fernandez de Landa J. (2021).
Itzulpen automatikoko sistemen analisia: Genero alborapenaren kasua. In
Fourth Conference for Basque Researchers (IkerGazte 2021).

Fernandez de Landa et al. (IkerGazte 2021)

Fernandez de Landa J., García I., Salaberria A., and Campos J. A. (2021).
Twitterreko Euskal Komunitatearen Eduki Azterketa Pandemia Garaian. In
Fourth Conference for Basque Researchers (IkerGazte 2021).

García-Ferrero et al. (SemEval 2023)

García-Ferrero I., Campos J. A., Sainz O., Salaberria A., and Roth D.
(2023). IXA/Cogcomp at SemEval-2023 Task 2: Context-enriched Multi-
lingual Named Entity Recognition Using Knowledge Bases. In Proceed-
ings of the 17th International Workshop on Semantic Evaluation (SemEval
2023).

9

https://ecai2020.eu/papers/1018_paper.pdf
https://ecai2020.eu/papers/1018_paper.pdf
https://www.ixa.eus/sites/default/files/dokumentuak/13328/Itzulpen_automatikoko_sistemen_joeraren_analisia__generoaren_kasua.pdf
https://www.ixa.eus/sites/default/files/dokumentuak/13327/Sare_sozialen_analisia_pandemia_garaian.pdf
https://doi.org/10.18653/v1/2023.semeval-1.186
https://doi.org/10.18653/v1/2023.semeval-1.186


1 INTRODUCTION

Agerri et al. (Book chapter 2023)

Agerri R., Agirre E., Aldabe I., Aranberri N., Arriola J. M., ..., Salaberria
A., ... and Soroa A.(2023). State-of-the-Art in Language Technology and
Language-centric Artificial Intelligence.. In European Language Equality:
A Strategic Agenda for Digital Language Equality.

Fernandez de Landa et al. (SIGUL 2024)

Fernandez de Landa J., García-Ferrero I., Salaberria A., and Campos J.
A. (2024). Uncovering Social Changes of the Basque Speaking Twitter
Community during COVID-19 Pandemic. In Proceedings of the 3rd Annual
Meeting of the Special Interest Group on Under-resourced Languages @
LREC-COLING 2024.

Miranda et al. (Under Review - NeurIPS 2024)

Miranda I., Salaberria A., Agirre E., and Azkune G. (2024). BiVLC: Ex-
tending Vision-Language Compositionality Evaluation with Text-to-Image
Retrieval. arXiv preprint arXiv:2406.09952.
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2. CHAPTER

Background

This thesis explores two limitations of contemporary vision-and-language models
(VLMs). Therefore, in this chapter we explain the research landscape in which
this work is located, exploring relevant datasets and state-of-the-art systems for
our work. Before entering the domain of VLMs, we briefly introduce their build-
ing blocks (Section 2.1) to discuss then the state-of-the-art of two different kinds
of VLMs (Section 2.2): language models with visual components and text-to-
image generators. Finally, we explore the recent advances in world knowledge
integration and spatial reasoning (Section 2.3).

Before starting with the related work, it is noteworthy to mention that the state-
of-the-art has changed significantly since the start of this thesis. During this chap-
ter, we have distinguished between the state-of-the-art at the time of development
of this work and the research landscape at the time of writing this manuscript.

2.1 Unimodal Systems

The term vision-and-language model (VLM) has been extensively used in the lit-
erature for transformer-based models adapted to process visual and textual data.
Even though some VLMs have been trained to process both modalities from
scratch (Wang et al. 2022a; Driess et al. 2023), most have adapted unimodal sys-
tems and use them as building blocks for VLMs (Li et al. 2019: 2020; Ramesh
et al. 2022; Li et al. 2023a), which include language models and visual encoders.

11



2 BACKGROUND

(a) Encoder-only (b) Decoder-only (c) Encoder-decoder

2.1 Figure – Transformer architectures are divided into three main categories:
encoder-only, decoder-only and encoder-decoder. Source figures from Wang
et al. (2023).

Language Models

Language modelling is a well-established research topic that centres on creating
probabilistic models of natural language. The landscape has drastically changed
since the initial approach of Shannon (1951) with n-gram language models. Neu-
ral language models emerged as robust alternatives to n-gram models (Bengio
et al. 2000) and task-specific variants of recurrent neural networks (RNNs) were
popularly used for many NLP tasks over the last decade (Mikolov et al. 2010; Cho
et al. 2014; Sutskever et al. 2014).

The adoption of two key concepts defined the starting landscape of this the-
sis. On the one hand, the pre-training and fine-tuning paradigm allowed language
models to learn the underlying patterns and semantic knowledge present in un-
labelled text corpora. This allows us to fine-tune these pre-trained task-agnostic
models to downstream tasks (Peters et al. 2018). On the other hand, Vaswani
et al. (2017) introduced the transformer architecture. It employs self-attention
mechanisms to calculate an attention score for every token (or text unit) in text
sequences, effectively modelling the influence each word has on the others in par-
allel. This parallelization capability greatly surpasses RNNs, enabling the efficient
pre-training of language models on massive datasets using several GPUs.

The transformer architecture was originally defined as an encoder-decoder ar-
chitecture, as its initial goal was to tackle machine translation, a sequence-to-
sequence downstream task. Even though the following transformer models used
the pre-train and fine-tune paradigm, they employ different neural architectures
depending on the downstream tasks they are meant to solve.
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2.1 UNIMODAL SYSTEMS

• Encoder-only: These models only use the encoder part of Vaswani et al.
(2017) the transformer architecture. This way, attention layers can access
all tokens of the initial sentence (see Figure 2.1a). Pre-training typically in-
volves corrupting a sentence (e.g., by masking random words), challenging
the model to find or reconstruct the original sentence, as well as predict-
ing whether two given sentences come one after the other or not. A special
classification token prepended to the input called [CLS] with a classification
layer on top is used for this prediction task. Encoder models excel in tasks
requiring a comprehensive understanding of the entire sequence, such as
sentence classification, named entity recognition, and question-answering.
Devlin et al. (2019) proposed BERT, which established the norm of us-
ing encoder-only models for language understanding tasks (Liu et al. 2019;
Yang et al. 2019; He et al. 2020).

• Decoder-only: For any given token, the attention layers of these models
can only access the words positioned before it in the sentence (see Figure
2.1b). These auto-regressive models are typically pre-trained by predicting
the next token in the sequence. Decoder-only models like GPT (Brown
et al. 2020) and LLAMA (Touvron et al. 2023) are particularly well-suited
for text generation tasks.

• Encoder-decoder: The original transformer architecture follows this encoder-
decoder approach. In this approach, the decoder attends to all the previously
generated tokens to generate the next token, as well as the final representa-
tions of the context previously fed to the encoder (see Figure 2.1c). Raffel
et al. (2020) showed with their T5 models that almost all NLP tasks can be
cast as a sequence-to-sequence generation task. Thus, an encoder-decoder
language model is a unified model that can perform every natural language
understanding and generation task.

Recent advancements with language models pre-trained on extensive textual
corpora have significantly enhanced performance in downstream NLP tasks. In
addition to acquiring linguistic knowledge, these models also store world knowl-
edge embedded in the training data (Petroni et al. 2019), which we call implicit
knowledge. Not only that, the size of these models is also correlated with their
capacity to store knowledge and adapt to new tasks (Kaplan et al. 2020). This fact
pushed researchers to increase the capacity of these models, increasing their num-
ber of trainable parameters up to four orders of magnitude compared to BERT’s
base model (Achiam et al. 2023).
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Large language models (LLMs) showcase emerging abilities that smaller mod-
els do not have (Wei et al. 2022b), including in-context learning capabilities that
remove the necessity to do task-specific fine-tunings (Brown et al. 2020). Exam-
ples of general-purpose LLM families include GPT (Brown et al. 2020), LLAMA
(Touvron et al. 2023) and PALM (Chowdhery et al. 2023).

Visual Encoders

When RNNs started gaining traction in the field of NLP, a similar phenomenon
occurred with convolutional neural networks (CNNs) within the field of computer
vision. With the advent of deep learning, Krizhevsky et al. (2012) popularized
the use of deep CNNs for image recognition tasks by significantly outperforming
previous state-of-the-art, and Simonyan and Zisserman (2015) showed the rele-
vance of the capacity and depth of these CNNs. Their initial vanishing gradient
issues were addressed by adding skip connections between convolutional layers
(He et al. 2016; Xie et al. 2017; Szegedy et al. 2017), settling CNNs as the de-
facto choice for encoding visual representations until recently.

The transformer architecture is not tied to process just text. Dosovitskiy et al.
(2020) adapted an encoder-only transformer for image recognition tasks, by divid-
ing images into non-overlapping patches, reshaping them into one-dimensional
embeddings that the encoder can work with, and adding a classifier head on top of
the encoder. CNNs and transformer-based models show an overall similar perfor-
mance in image recognition tasks, and, nowadays, both approaches are still being
used. Nevertheless, we are interested in the visual representations these classifiers
learn before feeding them to their classification heads, as these one-dimensional
embeddings encode relevant visual information that can be fed to VLMs.

Finally, these visual encoders are also used to build the backbones of object
detectors, which we will employ when working on spatial reasoning, as they detect
and, therefore, locate objects in a given image. Faster R-CNN is an example of
a CNN-based object detector (Ren et al. 2015), whereas DETR is a transformer-
based alternative (Carion et al. 2020).

2.2 Vision-and-language Models

Vision-and-language models encompass a variety of models that leverage visual
and textual data. These models can be divided into 4 groups (see Figure 2.2). In
this dissertation, we use or compare models belonging to all groups, which are:
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2.2 VISION-AND-LANGUAGE MODELS

2.2 Figure – Different families of VLMs: contrastive, masked, generative, and
VLMs with pre-trained backbones. The first two families have inputs on both
sides with outputs in the middle, while in the other cases, inputs are on the left
and outputs on the right. Source figure from Bordes et al. (2024).

• Contrastive VLMs: They are dual encoders that learn to project visual and
textual representations into the same multimodal space.

• VLMs with masking objectives: Similar to encoder-only language models,
they use self-supervision by learning to recover masked image regions and
text tokens with multimodal context (e.g. image-caption pairs).

• Generative VLMs: These models generate images, captions, or both. They
can condition their output on different input modalities as well.

• VLMs with pre-trained backbones: They adapt LLMs to vision by learning
to map visual features encoded by pre-trained image encoders to the LLM.
As LLMs are kept frozen during adaptation, they maintain their emerging
abilities, such as in-context learning.
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Many approaches can be considered in more than one of these groups. For
example, VLMs with pre-trained backbones are generative by definition, as their
LLM backbones generate texts. It is also true that text-to-image generators are
rarely called VLMs in the literature, even though they leverage both vision and
language and rely on grounding both modalities.

Considering the work done in this dissertation, we divide this section into three
subsections. First, we focus on vision-and-language encoders. These encoders can
be divided into two groups mentioned in Figure 2.2: i) VLMs with masking objec-
tives, which are the state-of-the-art systems contemporary to our work presented
in Chapters 3 and 4, and ii) contrastive VLMs, which are used as building blocks
in some of the models introduced in Chapter 5. Then, we deepen into the current
state-of-the-art composed of generative models that are either native large VLMs
(trained from scratch) or VLMs based on large pre-trained backbones. Finally,
we specifically discuss text-to-image generators, as we work with their spatial
reasoning capabilities in Chapter 5.

2.2.1 Vision-and-language Encoders

Following the trend of transformer-based language models, the first transformer-
based VLMs had primarily encoder-only architectures (Li et al. 2019; Lu et al.
2019; Radford et al. 2021). Their language understanding capabilities initially
outshined the text generation abilities of early transformer decoders, which pushed
the use of encoder-only language models and VLMs. These vision-and-language
encoders use image-caption pairs to learn grounded latent spaces of both modal-
ities by training with one of the following approaches: masking objectives or
contrastive learning.

Use of masking objectives

This training paradigm is a natural progression of encoder-only language mod-
els. As mentioned in Section 2.1, language encoders learn by reconstructing input
sentences with random masked words, and predicting if two sentences come one
after the other or not. These objectives can be tweaked for VLMs that work with
image-caption pairs. Thus, we can learn to align regions of images with the cap-
tion by partially masking the caption (Masked Language Modeling or MaskLM)
and predicting whether the image corresponds to the caption (Image-Text Match-
ing or ITM).

16



2.2 VISION-AND-LANGUAGE MODELS

For example, VisualBERT (Li et al. 2019) employs a pre-trained object de-
tection model, Faster R-CNN (Ren et al. 2015) to identify and represent objects
of an image. Then, it feeds those representations to a BERT-like language model
and defines MaskLM and ITM objectives to implicitly align components of a cap-
tion with corresponding regions of an image using the self-attention layers of the
language model encoder. More recent approaches propose alternative masking
objectives, such as PrefixLM (Wang et al. 2021) and Masked Image Modeling
(Assran et al. 2023), an analogous objective of MaskLM whose goal is to recon-
struct masked region features of images.

In early encoder-only VLMs, there was no consensus on several architectural
decisions. For instance, Li et al. (2019) and Su et al. (2020) opt for single-stream
approaches, that is, they encode both modalities on the same module and self-
attention layers are applied to all modalities at the same time. Meanwhile, Lu et al.
(2019) and Tan and Bansal (2019) establish dual-stream encoders, where each
modality is encoded separately and the mapping between modalities is mainly
computed in cross-attention layers. Comparing contemporary systems it seems
that using single-stream or dual-stream backbones does not affect their perfor-
mance much (Li et al. 2019; Su et al. 2020; Lu et al. 2019; Tan and Bansal 2019).
Therefore, single-stream transformer encoders became more popular due to their
simpler architecture and the tendency to create VLMs by adapting text-only lan-
guage models, which are single-stream by definition. Another relevant decision
was to use grid representations of images instead of object regions (Jiang et al.
2020; Kim et al. 2021), as grid representations offer similar performance and re-
move dependencies with pre-trained object detectors.

Instead, architectural choices including model capacity, pre-training objec-
tives, and datasets used are key factors for their good performance. Popular pre-
training datasets used to train VLMs with masking objectives include: Conceptual
Captions (Sharma et al. 2018), MS-COCO (Lin et al. 2014), SBU (Ordonez et al.
2011), and Visual Genome (Krishna et al. 2017).

VLMs with masking objectives constitute the state-of-the-art contemporary
to the research presented in Chapters 3 and 4, as, at the time of development,
they offered the strongest performance on visual question-answering and spatial
reasoning, respectively.

Contrastive learning

Contrastive learning consists of mapping input images and texts into a multimodal
feature space using two unimodal encoders. Given a batch of N image-text pair

17



2 BACKGROUND

representations {(vi, ti) : where i ∈ [1, ..., N ]}, this alignment follows the In-
foNCE loss (Oord et al. 2018), minimizing the distance between embeddings of
matching image-text pairs and maximizing the rest (see Equation 2.1).

LInfoNCE = −
N∑

i=1

log
e(sim(vi,ti)/τ)

∑N
j=1 e

(sim(vi,tj)/τ)
(2.1)

Models like CLIP (Radford et al. 2021) and ALIGN (Jia et al. 2021) use the
cosine distance as the similarity metric between text and image embeddings de-
fined in Equation 2.1, where τ is a learnable temperature parameter. Another
approach, LiT (Zhai et al. 2022b), proposes a method to fine-tune the text en-
coder using the same training loss while maintaining the image encoder frozen.
This technique aims to enhance the text encoder’s ability to interpret image em-
beddings from the image encoder. Other methods, such as FLAVA (Singh et al.
2022), combine contrastive learning with additional pre-training strategies (in-
cluding masking objectives) to align vision and language embeddings effectively.

These contrastive models need millions of image-caption pairs to learn rich
representations. In the literature, contrastive models usually use larger training
datasets than VLMs with masking objectives of comparable size, at least an order
of magnitude larger (Li et al. 2019; Radford et al. 2021). Moreover, the batch size
used during training also conditions the quality of the learned multimodal space.
A high batch size implies more negative image-caption pairs in each training step,
which allows for more diverse and difficult negative samples. The need for higher
batch sizes has pushed the use of transformer-based visual encoders (e.g. ViT
models) instead of CNN-based encoders (e.g. ResNet models), as the former ones
are more efficient for training and offer similar performance (Radford et al. 2021).

Even though early transformer-based models like CLIP and ALIGN were
trained on private vision-and-language datasets with millions of instances, re-
searchers can now train their models using public open-source datasets like PMD
(Singh et al. 2022) and LAION (Schuhmann et al. 2022), which were used to train
FLAVA and the open-source version of CLIP (Cherti et al. 2023), respectively.

In our work, we use CLIP models in two use cases described in Chapter 5. On
the one hand, its text encoder is used in text-to-image generation to obtain mean-
ingful representations of the input caption and use them to condition diffusion
models while generating the image. On the other hand, CLIP’s zero-shot classifi-
cation capabilities enable it to be adapted into an open-vocabulary object detector,
OWL-ViT (Minderer et al. 2022), which will come in handy when automatically
evaluating the spatial reasoning capabilities of image generators.
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2.2.2 More Recent VLMs

The most recent VLMs are orders of magnitude larger than the previously men-
tioned encoders. With the emergence of general-purpose LLMs, alternative vision-
and-language models appeared, showcasing similar capabilities. Since transfor-
mer-based language models and VLMs emerged, both kinds of systems have
followed the same architectural trends. Therefore, it is easy to find vision-and-
language alternatives to text-only language models. For instance, OFA (Wang
et al. 2022a) follows the same principles as the text-only T5 model (Raffel et al.
2020). Both are generative encoder-decoders that build general-purpose models,
with the distinction that OFA also integrates vision-only and vision-and-language
tasks during its pre-training.

Currently, the VLM families described in Figure 2.2 do not share the same
popularity, as the use of encoder-only models has declined over the last few years,
following a similar fashion to text-only encoders. Contrastive models are used
to obtain rich multimodal representations, but the performance and versatility of
large generative VLMs in downstream tasks make VLMs with masking objectives
a less appealing alternative. However, Zeng et al. (2022b) proposed mixing both
masking and contrastive objectives to build more robust encoders, showing that
this research line is still active and gives competitive results in some vision-and-
language tasks, e.g. visual question-answering (Zeng et al. 2024; Luo et al. 2024).

As seen before, generative LLMs can be adapted to leverage visual representa-
tions, but there are different ways to build large VLMs. Some are pre-trained from
scratch, like OFA and CM3LEON (Yu et al. 2023). In the case of PALM-E (Driess
et al. 2023), they fine-tune an existing LLM alongside a visual encoder to incor-
porate other modalities. Many approaches use frozen LLMs and visual encoders,
enabling the LLM to leverage the new modality by mapping visual representa-
tions. These approaches include naive adaptations that tweak LLMs for specific
vision-and-language tasks by learning simple linear projections (Koh et al. 2023),
as well as models that learn more complex mappings, such as BLIP-2 (Li et al.
2023a) that uses a Q-former to map visual representations and Flamingo (Alayrac
et al. 2022) which employs a Perceiver model (Jaegle et al. 2021).

Another paradigm that has been applied to VLMs is instruction tuning. This
simple method fine-tunes a model on a labelled dataset of instructional prompts
and corresponding outputs to adapt LLMs to interact with users and follow their
commands (Wei et al. 2022a). By creating a vision-and-language instruction
dataset and fine-tuning a text-only LLAMA-2 model with the dataset, Liu et al.
(2024) builds an instruction-tuned model that leverages vision and language.
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2.2.3 Text-to-image Generators
Many text-to-image systems have been proposed in the last few years. In general,
we can distinguish between those based on auto-regressive transformer architec-
tures, such as the original Dall-E (Ramesh et al. 2021), the multi-task system OFA
(Wang et al. 2022a) or CogView2 (Ding et al. 2022); and those based on diffusion
models (DMs), pioneered by GLIDE (Nichol et al. 2022), which evolved into la-
tent diffusion models (LDMs) and are becoming the de-facto architecture for the
latest text-to-image generators, such as Stable Diffusion (Rombach et al. 2022)
and Attend-and-Excite (Chefer et al. 2023).

In our work, we fine-tune open-source LDMs with the strongest spatial reason-
ing capabilities (Gokhale et al. 2023), that is, Stable Diffusion models. The rest of
this section describes the basic concept of DMs, the architecture of text-to-image
LDMs, training objectives, and common evaluation metrics.

Basic concepts of DMs: Diffusion models learn to recover noisy representa-
tions of images iteratively. During training, noise is added to real images in the
forward pass, and the model is optimized to estimate that same noise to reverse
the process.

• Forward pass: The addition of noise is a Markov chain where Gaussian
noise is added until traces of the original image are removed. Given an
image sampled from the data distribution x0 ∼ q(x0), the forward pass
generates xt iteratively with q(xt|xt−1) in T diffusion steps. There are no
learnable parameters in the forward pass, as the rate at which Gaussian noise
N is added to xt−1 is fixed before training.

• Reverse pass: DMs learn to recover noisy images during training. Starting
from an image sampled from pθ(xt), we generate x0 ∼ pθ(x0) images trying
to mimic the true data distribution q(x0).

LDM := Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt, t)∥22

]
(2.2)

The optimized function is defined in Equation 2.2, where ϵ is the added
noise during the forward pass and ϵθ(xt, t) is the predicted noise of the de-
noising module given the noisy input and the number of t steps in which the
noise has been applied to the input image.

At inference time, the reverse process is repeated T times, where, on each
step t, the predicted noise ϵθ(xt, t) is sampled and removed from xt to obtain
xt−1.
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2.3 Figure – Architecture of latent diffusion models, which can condition its
output on different modalities. Source figure from Rombach et al. (2022).

In summary, DMs are probabilistic models designed to learn a data distribution
q(x0) by iterative denoising a normally distributed variable, which corresponds to
learning the reverse process of a fixed Markov Chain of length T .

Architecture. DMs responsible for image generation are composed of a dif-
fusion and denoising module, but conditional LDMs used for text-to-image gen-
eration can be divided into three different modules (see Figure 2.3):

• Perceptual image compressor: This module encodes and decodes images
into a low-dimensional latent space using E and D respectively. Compared
to the high-dimensional pixel space, this space is more suitable as LDMs
can focus on the relevant semantic bits of q(x0) and train in a computation-
ally more efficient space.

• Diffusion and denoising module: The module responsible for the forward
and reverse passes. Compared to DMs that work in pixel space (Nichol
et al. 2022), LDMs use latent representations (Rombach et al. 2022).

• Conditioning mechanism: Both DMs and LDMs can be conditioned on cap-
tions, or even other modalities. This conditioning information denoted as y
can be fed to a domain-specific encoder τθ that projects y to an intermediate
representation τθ(y). These representations condition the generation by em-
ploying cross-attention layers in the denoising module, which enable tasks
such as text-to-image generation.
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Stable Diffusion models (Rombach et al. 2022; Wallace et al. 2024) utilize
VQ-GAN as their perceptual image compressor (Esser et al. 2021), a UNET ar-
chitecture for denoising (Ronneberger et al. 2015) and CLIP’s text encoder to
encode meaningful conditioning representations (Radford et al. 2021).

Regarding data needed to learn the denoising objectives, DMs without any
conditioning mechanism only need images, learning image generation in an unsu-
pervised manner. For text-to-image generation, DMs need labelled data consisting
of image-caption pairs. The literature uses datasets with millions of instances to
learn these denoising objects. That is the case of Stable Diffusion models, that use
the public LAION dataset for their training process (Schuhmann et al. 2022).

Evaluation. Evaluating text-to-image generation is not a trivial task. Many
aspects of the image can be evaluated, so different metrics have been proposed
over the last few years. Fréchet Inception Distance (FID) is a widely used metric
for quantitatively assessing image quality and photorealism (Heusel et al. 2017).
More specifically, FID compares the mean and standard deviation of the deepest
layer in Inception v3 of synthetic and real images. A high FID value means the
generated images are far from real-world images. Inception Score is a related
Inception-based metric that assesses the photorealism of generated images (Sali-
mans et al. 2016). If we want to analyze how well synthetic images are aligned
with their corresponding captions, R-Precision (Xu et al. 2018) and CLIPScore
(Hessel et al. 2021) are two popular options.

In our work, we use FID during the fine-tuning of diffusion models to analyze
that image quality does not decay during the fine-tuning process. Apart from
that, we are interested in evaluating the alignment between images and captions
containing spatial relations. As R-Precision and CLIPScore are not specifically
designed to evaluate spatial reasoning abilities and might not encode the meaning
of spatial relations, we will resort to more suitable metrics mentioned in Section
2.3.2.

2.3 Limitations of VLMs
As the field of VLMs continues to expand with more robust approaches, their
abilities to generate captions, answer questions... about images have drastically
increased. However, they still struggle with tasks that need external knowledge1

or spatial reasoning, and thus methods to alleviate this need have been explored.

1We use external, outside, or world knowledge interchangeably, referring to knowledge that is
not present in the training data but can be found in external knowledge sources.
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2.3.1 World Knowledge Integration

Visual question-answering (VQA) tasks are commonly used to analyze world
knowledge integration in VLMs. Given an image and a question about it, the
goal is to answer that question correctly. To solve these tasks, VLMs only require
mapping visual information with the given question and, if needed, retrieving rel-
evant knowledge to answer the question, which makes them suitable for building
methods that integrate world knowledge. Many VQA tasks in the literature can
be solved with just the visual information of the image (Antol et al. 2015; Goyal
et al. 2017; Johnson et al. 2017). However, others demand leveraging external
knowledge to infer the answer, that is, knowledge-based VQA tasks.

Good examples of knowledge-based VQA tasks are KB-VQA (Wang et al.
2017a), KVQA (Shah et al., 2019), FVQA (Wang et al. 2017b) and OK-VQA
(Marino et al. 2019). KVQA requires knowledge about named entities (e.g. Barack
Obama, White House, United Nations), which is provided as a graph. FVQA an-
notates questions by selecting a fact from a fixed knowledge base but its size is
small. KB-VQA is even smaller, presenting template-based questions whose an-
swers can be obtained reasoning over commonsense resources or Wikipedia. In
contrast, OK-VQA requires knowledge from unspecified external resources and,
although smaller than KVQA in terms of the number of images and question-
answer pairs, it is considerably bigger than the other knowledge-based VQA data-
sets and requires more varied knowledge sources. Therefore, we have chosen
OK-VQA for our experiments, which is evaluated using the standard VQA score
defined by Goyal et al. (2017).

As a side note, after the development of our work in world knowledge inte-
gration, a new knowledge-based VQA task was released, A-OKVQA (Schwenk
et al. 2022). It is twice as big as OK-VQA, but it mainly focuses on questions that
require commonsense reasoning, which makes finding the needed information in
external knowledge sources more difficult than in OK-VQA.

Implicit vs. Explicit (Symbolic) Knowledge

Knowledge is encoded in different shapes and forms. Text, graphs, or tabular
data are common modalities in which knowledge is stored. On the one hand,
text corpora, such as ThePile (Gao et al. 2020), can be scrapped from the Web
and contain knowledge from different domains. On the other, knowledge graphs
(Speer et al. 2017; Ilievski et al. 2021) and tabular data (Parikh et al. 2020) can
be used to find knowledge sparse in text (e.g. commonsense).
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System Year
Implicit

Knowledge
Symbolic

Knowledge VQA Score

VLM Encoders

ConceptBERT 2020 VilBERT ConceptNet 33.7

KRISP 2021 BERT
ConceptNet, hasPart KB
DBPedia, Visual Genome 38.9

RVL 2021 LXMERT ConceptNet, Wikidata 39.0

MAVEx 2022 VilBERT
ConceptNet, Wikipedia

Google Images 41.4

LLMs / Large VLMs

PICa 2022 GPT-3 None 48.0
KAT 2022 GPT-3 Wikidata 54.4
REVIVE 2022 GPT-3 Wikidata 58.0
PromptCap 2023 GPT-3 None 60.4
Prophet 2023 GPT-3 None 61.1
PaLM-E 2023 PaLM None 66.1

2.1 Table – Summary of OK-VQA systems, their knowledge sources, and per-
formance measured with VQA score. See text for references.

As Marino et al. (2021) specifies, knowledge can be represented in two types.
Explicit or symbolic knowledge encompasses knowledge that can be explicitly
found in different modalities (text, graphs,...), whereas implicit knowledge is em-
bedded into some non-symbolic form (e.g. weights of a language model, as they
implicitly capture language-based knowledge during pre-training). In our work,
we analyze several approaches to better leverage the implicit knowledge embed-
ded in language models and VLMs. Therefore, we deeply analyze the state-of-the-
art VLMs evaluated in OK-VQA, emphasizing their use of different knowledge
sources.

Integrating Knowledge in VLMs for OK-VQA

Table 2.1 summarizes the state-of-the-art for OK-VQA during the development of
this thesis. We distinguish their knowledge sources and split them into two groups
depending on their backbone models: i) VLM encoders with masking objectives
and ii) LLMs or large VLMs.
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In short, this division establishes a change in the paradigm of state-of-the-art
VLMs to solve OK-VQA. Until 2022, OK-VQA systems focused on adding sym-
bolic knowledge of different modalities to the VLMs. However, the advent of
LLMs showed that models with higher capacity can leverage their implicit knowl-
edge better, and the efforts of researchers started to be spent on better leveraging
this embedded knowledge. We now describe the approaches mentioned in Table
2.1 with more detail.

• ConceptBert (Gardères et al. 2020) was the first system to use multimodal
transformers and symbolic knowledge for OK-VQA. It is based on a com-
bination of a pre-trained BERT to encode questions, a graph convolutional
neural network to encode triplets extracted from the ConceptNet knowl-
edge graph (Speer et al., 2017), and a multimodal transformer (VilBERT)
to jointly represent and reason over image features and encoded question
tokens.

• KRISP follows a similar approach (Marino et al. 2021), combining a VLM
with symbolic knowledge. In this case, the backbone model of KRISP
is MMBERT, based on VisualBert (Li et al. 2019), and initialized with the
weights of a pre-trained BERT. Additionally, authors built a knowledge
graph fusing DBPedia (Auer et al. 2007), ConceptNet (Speer et al. 2017),
VisualGenome (Krishna et al. 2017) and hasPart KB (Bhakthavatsalam et al.
2020). They used different image feature encoders and question tokens to
obtain a subset of the full graph relevant to the target question and im-
age. Finally, using a graph convolutional neural network, they combined
the symbolic and implicit knowledge to predict the final answer.

• MAVEx (Wu et al. 2022) and RVL (Shevchenko et al. 2021) showed differ-
ent ways to combine implicit and symbolic knowledge. MAVEx used a pre-
trained VilBERT to generate various candidate answers which were later
reranked using answer-specific knowledge retrieval. They also used both
textual and visual knowledge resources, including images searched using
Google, sentences from Wikipedia articles, and concepts from ConceptNet.
On the other hand, RVL trained the two-stream multimodal transformer
LXMERT (Tan and Bansal 2019) with an auxiliary objective that aligned
its representations with knowledge graph embeddings retrieved from Con-
ceptNet and Wikidata.
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These models (Gardères et al. 2020; Marino et al. 2021; Wu et al. 2022;
Shevchenko et al. 2021) employ different symbolic knowledge sources. Neverthe-
less, we have noticed that the improvement obtained by adding symbolic knowl-
edge is minor. MAVEx is the only one with a significant improvement. However,
due to its design, the model is limited to answering a set of answer candidates
generated by only accessing implicit knowledge. This shows the dependency of
current systems on the encoded knowledge found in VLMs. So, we focus on
implicit knowledge (as opposed to explicitly encoded knowledge) which we ex-
ploit by first verbalizing images and then feeding these captions to a pre-trained
language model.

Contemporary to our work, Yang et al. (2022) proposed PICa, which prompts
GPT-3 via the use of image captions and object tags. By feeding in-context ex-
amples of OK-VQA to the LLM, they set the new state-of-the-art for OK-VQA.
They also show that the careful selection of these in-context examples and an en-
semble of GPT-3 models boost PICa’s performance further. These findings fueled
the use of LLMs, especially GPT-3, for knowledge-based VQA. Some of these
approaches tried to retrieve relevant knowledge from Wikidata via CLIP mod-
els, which include KAT (Gui et al. 2022) and REVIVE (Lin et al. 2022). How-
ever, OK-VQA’s leaderboard2 is currently led by Prophet (Shao et al. 2023) and
PROMPTCap (Hu et al. 2022), which do not rely on symbolic knowledge.

Finally, it is worth mentioning that, to the best of our knowledge, PALM-E
sets the current state-of-the-art in OK-VQA (Driess et al. 2023) with a VQA score
of 66.1 points (doubling ConceptBert’s score), although these results are not re-
flected in OK-VQA’s leaderboard. PALM-E adapts a 540B parameter transformer-
based decoder-only LLM (Chowdhery et al. 2023) by injecting multimodal obser-
vations into the language embedding space as if they were language tokens. As
OK-VQA is one of the many vision-and-language datasets used in the training
phase of PaLM-E, its good performance is not unexpected.

2.3.2 Spatial Reasoning
Spatial reasoning (SR) involves understanding and processing the spatial relations
between objects within visual scenes or textual descriptions. This capability is
crucial for tasks that require understanding how objects are positioned relative to
each other and how they interact within a given space. We explore SR in two
settings. On the one hand, we explore how language models can learn to interpret

2https://okvqa.allenai.org/leaderboard.html. (accessed on 06/07/2024)
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spatial relations correctly. On the other, we dive into text-to-image generation
to evaluate and improve the generation of correct spatial relations. Note that,
in this dissertation, we focus on explicit spatial relations (e.g. the man above the
horse), not on implicit ones (e.g. the man riding the horse, where the same relative
position between objects is defined implicitly).

SR in Language Models

Datasets. The spatial commonsense knowledge of current LMs and VLMs is
evaluated from different angles thanks to many available datasets. For example,
Bagherinezhad et al. (2016) and Elazar et al. (2019) focus on the acquired com-
monsense knowledge of models about object scales, e.g. do they know that a
person is bigger than an ant? In that sense, they do not provide a specific scene
context, but rather ask about generic object scale relations, so the dataset they
provide is not useful for our work. Collell et al. (2018) and Elu et al. (2021) pro-
pose datasets and methods to generate bounding boxes from textual descriptions.
Although the evaluation approach is suitable for testing spatial grounding, these
methods focus on implicit spatial relations, which we are not interested in.

Intending to evaluate both object scales and spatial relations, Liu et al. (2022b)
and Zhang et al. (2022) provide new unified datasets. As the objective of these
works is to evaluate whether VLMs learn more spatial commonsense than lan-
guage models, the datasets are purely textual, so they do not provide any means to
ground spatial relations (they assume the grounding occurs in a previous training
process), and, hence, they are not useful for our work. Interestingly, authors find
that VLMs, and more concretely text-to-image systems, perform much better than
text-only LMs.

There are other ways to test the spatial inference and reasoning capabilities of
VLMs. CLEVR was one of the pioneering works on testing compositional lan-
guage and elementary visual reasoning (Johnson et al. 2017). Using 3D-rendered
images of simple objects such as spheres, cones, and cubes, different questions
are generated automatically. A model needs to process the image and the question
to provide an answer. Although CLEVR can be used to test spatial grounding, it
has two major drawbacks: i) questions not only cover spatial grounding but some
other concepts such as compositional language and attribute identification, and ii)
spatial relations are limited to four, i.e. left, right, behind and in front. The natural
extension of CLEVR is GQA (Hudson and Manning 2019), which shares similar
ideas but is built on natural images. Although spatial grounding is essential for
this task, compositional language is also evaluated. As both dimensions appear
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together, we believe this dataset is not the best option for our purposes.
In the text-only scenario, SpartQA provides another synthetic dataset (with a

small subset annotated by humans). Given a spatial description of a scene with
explicit relations, a model has to answer some spatial questions about that scene.
The task is specially focused on spatial reasoning capabilities, such as transitivity,
and does not provide any means to ground spatial relations, as its target is the
reasoning process. Moreover, similar datasets have been recently proposed as an
extension and improvement of SpartQA (Mirzaee and Kordjamshidi 2022).

In our work, we use the recent Visual Spatial Reasoning (VSR) dataset (Liu
et al., 2023) to evaluate the spatial grounding capabilities of text-only language
models. VSR has been designed to test spatial grounding capabilities, covering
65 different spatial relations over natural images collected from COCO (Lin et al.,
2014) and annotated by humans. Given an image, they provide a caption that
describes a spatial relation between two objects that appear in the image. That
relation can be real or fake, and the model has to infer precisely that, i.e. whether
the caption is aligned with the given image. We believe VSR is a good candidate
to evaluate the grounding of explicit spatial relations for language models and
VLMs. Nevertheless, as text-only language models cannot process images, we
propose a way to verbalize those images and run meaningful experiments.

Encoding layout information. Although VLM architectures may vary, the
basic idea is to input the models with textual tokens and visual features. As trans-
formers are feed-forward networks they do not consider the input order, thus,
positional encodings represent word order (Vaswani et al. 2017). A similar idea is
used also for visual features. LXMERT (Tan and Bansal 2019), for instance, uses
the x0, y0, x1, x2,W,H coordinates of a bounding box for a given visual feature,
projects them linearly, and sums it to the visual feature itself before inputting it
to the transformer. Alternatively, ViLT (Kim et al. 2021) does not use any object
detector, but works directly on image patches. They use positional embeddings
to represent the order of those patches in the image, very similar to the positional
embeddings of textual tokens.

Regarding text-only language models, to the best of our knowledge, Patel and
Pavlick (2022) represent scenes with textual tokens on which spatial grounding
and reasoning can be performed. More concretely, they propose to create grid-
like structures with textual tokens inside the vocabulary of the language model.
Their proposal is interesting, but it is limited to toy experiments since they can
only represent small scenes and six spatial relations: left, right, up, down, top and
bottom. In contrast, our approach described in Chapter 4 covers complex scenes
depicted in natural images and 23 spatial relations.
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2.4 Figure – VPGen’s Pipeline. It decomposes text-to-image generation in three
steps: i) lists and counts the objects described in the input caption, ii) generates
the layout conditioned on the amount of counted objects, and iii) generates the
image conditioned on the initial caption and the generated layout. Source image
from Cho et al. (2023b).

SR in Image Generation

In the last few years, text-to-image systems have improved in photorealism and
efficiency, but recent work has shown that their performance for explicit spatial
relations is not good (Gokhale et al. 2023; Cho et al. 2023b). These models strug-
gle to correctly draw textual descriptions like a cat on top of a table. To overcome
these limitations, VPGen (Cho et al. 2023b) and LayoutGPT (Feng et al. 2023)
propose pipeline systems, combining Large Language Models to generate layouts
from textual prompts and layout-to-image generators (Li et al. 2023b). The dif-
ference between both systems is that VPGen fine-tunes Vicuna-13B (Chiang et al.
2023) to generate layouts from textual descriptions, whereas LayoutGPT relies on
Llama-2-7B (Touvron et al. 2023) and in-context learning for the same purpose.3

See Figure 2.4 for more details on VPGen’s pipeline.
To avoid complex and large pipeline systems, (Yang et al. 2023) propose

ReCo, an end-to-end system that uses layout descriptions in the input. In our
approach described in Chapter 5, we also focus on end-to-end systems. Never-
theless, we avoid inserting layout information into the input, as this imposes a
substantial burden on users compared to simple text inputs.

Evaluation. To evaluate the performance of text-to-image generators for ex-
plicit spatial relations, dedicated datasets have been created, since commonly used
datasets like COCO (Lin et al. 2014), CC12M (Changpinyo et al. 2021) or LAION

3Originally they used LLMs from the OpenAI GPT family, but they have released a publicly
available Llama2-based variant of LayoutGPT, which we use in this work.
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(Schuhmann et al. 2022), contain very few examples of explicit spatial relations.
For example, Gokhale et al. (2023) proposes the SR2D dataset, composed of syn-
thetic captions created by combining two objects in the COCO object vocabulary
and four explicit spatial relations. SR2D only contains captions and can not be
employed for training. Similarly, Feng et al. (2023) published the Numerical and
Spatial Reasoning dataset (NSR-1K) which does include caption-image pairs. The
spatial part contains only 1021 image-caption pairs (738 for train and 283 for test,
with no development split) for 4 relations, insufficient for accurate evaluation and
too small for training.

There are many approaches for the automatic evaluation of explicit spatial re-
lations in generated images (Gokhale et al. 2023; Cho et al. 2023b; Feng et al.
2023. These evaluations rely on: i) object detectors to locate objects in the image,
and ii) heuristic rules that use bounding box coordinates to decide whether a given
relation is fulfilled. This implies the need for labeled evaluation data (Feng et al.
2023; Gokhale et al. 2023), that is, each caption must have a spatial triplet con-
taining two objects and their spatial relation. On the contrary, VPEval (Feng et al.
2023) uses GPT-3 to generate evaluation programs conditioned on the caption,
and runs these programs with the aid of visual tools (e.g. object detector, OCR).
Instead of more noisy evaluations, VPEval does not need labeled spatial triplets.
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3. KAPITULUA

Ezagutza Inplizituaren Erabilera VQA Sistemetan

3.1 Motibazioa eta Ekarpenak

Ikusmen-testu ataza gehienak definitzerakoan, ataza ebazteko adierazgarria den
informazioa datu-multzoko irudi eta testuetan zehazten da. Horiek dira, adibidez,
galdera-erantzute bisuala, edo VQA, (Antol et al., 2015) eta ikusizko inferentzia-
ren (Xie et al., 2019) kasuak. Hala ere, ataza batzuk ebazteko datu hauetatik at
dagoen ezagutza eskura eduki behar da. Kapitulu honetan, kanpo ezagutzan oi-
narritutako VQA ataza batean murgildu gara, OK-VQA atazan hain zuzen ere
(Marino et al., 2019). Bertan, galderak ondo erantzuteko irudiaren edukia izatea
ez da nahikoa. Irudi eta testu pareekin ebatz daitezkeen VQA atazak ez bezala,
ataza honek kanpo ezagutza txertatu, prozesatu eta ezagutza horretatik erantzunak
inferitzeko ahalmena duten ereduen beharra dauka.

OK-VQA atazan baliagarria den kanpo ezagutza bi azpimultzotan banatu dai-
teke (Marino et al., 2021): (i) ezagutza sinbolikoa, grafo edota beste datu egitura
batzuen bidez adierazi daitekeena, ConceptNet (Speer et al., 2017) ezagutza gra-
foa adibidez; eta (ii) ezagutza inplizitua, testu corpus erraldoietan entrenatutako
neurona sareen pisuetan kodetua azaltzen dena. Azkeneko esaldia indartuz, trans-
former arkitekturan oinarritutako hizkuntza-eredu aurrentrenatuak (Devlin et al.,
2019; Liu et al., 2019; He et al., 2020) arrakasta handiarekin erabili dira ezagutza
iturri inplizitu gisa (Petroni et al., 2019).

Hau horrela izanik, kapitulu honetan aurrentrenatutako hizkuntza-ereduak eza-
gutza inplizitu iturri gisa erabili ditugu. OK-VQA atazan hizkuntza-ereduen era-
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C: Three teddy bears sitting next 
to each other on a couch.

Q: Which american 
president is most 

associated with the stuffed 
animal seen here?

Image
Captioning
System

Language
Model

A: Teddy Roosevelt

3.1 Irudia – Galdera eta irudi bat emanda, irudiaren edukia hitzez adierazten du-
gu goiburuko baten bidez, inferentzia unean aurrentrenatutako hizkuntza-eredu
bat erabiliz. Gaur egungo ezagutzan oinarritutako hizkuntza-ereduak eredu mul-
timodalak baino hobeak dira, bai beraien orokortze ahalmenean eta baita infe-
rentzia unean ere.

bilera ohikoa bada ere, hainbat eratan integratzen dira modalitate anitzekin lan
egiterakoan. Izan ere, eredu hauek ikusizko eta testuzko sarrera datuez elikatu
behar dira ataza behar bezala ebazteko. Hizkuntza-ereduak testua bakarrik pro-
zesatzeko diseinatuta daude, testu corpus erraldoietan estentsiboki entrenaturik.
Hori dela eta, testuan soilik oinarritutako sistema batek ezagutza inplizitu hau ho-
beto aprobetxatuko duenaren hipotesia jarri dugu mahai gainean.

OK-VQA ikusmen-testu ataza denez, irudiak automatikoki berbalizatzea pro-
posatzen dugu irudiari buruzko informazioa hitzez adierazteko modu gisa. Gure
kasuan, irudiak berbalizatzen ditugu goiburukoen bitartez, hau da, irudia deskri-
batzen duen esaldi baten bitartez. Behin goiburuko hauek sortzen direnean, plan-
teatzen dugun metodoak testuzko ereduak bakarrik erabiltzen ditu. Irudia ber-
balizatzeko garaian informazio galera bat dagoela badakigu eta testua bakarrik
erabiltzeak hasierako galera hori konpentsa dezakeen egiaztatu nahi dugu. Goi-
burukoetan oinarritutako eredu hau (Caption based Model edo CBM) 3.1. Irudian
antzeman daiteke.
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3.1 MOTIBAZIOA ETA EKARPENAK

Gure hipotesia balioztatzeko, OK-VQA atazaren gaineko esperimentazio za-
bala aurkezten dugu. Modalitate anitzeko transformer-ra ikusmen-testu atazetan
irudi eta testu pareak prozesatzeko erabiltzen den eredu estandarra da, eta guk
proposatutako CBM ereduarekin konparatu dugu. Hizkuntza-ereduen tamainaren
eragina aztertu dugu ere bai, OK-VQA atazan ereduaren gaitasun eta kapazitateak
nola eragiten duen ikusteko.

Gure ikerketaren ekarpenak ondorengoak dira:

• Goiburukoak irudiak baino eraginkorragoak dira OK-VQA atazan tamaina
berdineko ereduak erabiltzen direnean. Gainera, pareko emaitzak lortzen
dituzte beste VQA datu-multzo osagarriekin doitzen badira.

• Hizkuntza-ereduen tamaina eta kapazitatea handitzeak artearen egoerako
emaitzak lortzeko ahalmena ematen du, gaur egungo modalitate anitzeko
transformer-ak hein handi batean gaindituz. Hobekuntza hau oraindik egon-
kortu ez dela antzeman dugu.

• PICa ereduaren (Yang et al., 2022) testuinguru bidezko ikasketaren erabi-
lera konplexuak ez du gure eredu txikiagoaren doikuntza gainditzen, hau
da, T5 batean (Raffel et al., 2020) oinarritutako gure sistemak emaitza kon-
paragarriak lortzen ditu GPT-3 ereduaren bost inferentzien bateratzearekin
konparatuz. Kontuan izan behar dugu GPT-3 ereduaren parametro kopurua
15 aldiz handiagoa dela.

• OK-VQAn goiburukoen ekarpena VQA ataza estandar batean (Goyal et al.,
2017) baino dezente handiagoa da. Honek testu modalitateko ereduak kan-
po ezagutza behar den kasuetan bereziki eraginkorrak direla adierazten du.

Gure VQA eredua bizitza errealeko kasu ezberdinetara egokitu daiteke itsuei
edota ikusmen urria duten pertsonei laguntzetik (Gurari et al., 2018) gaur egungo
asistente birtualak hobetzera (Tulshan and Dhage, 2018). Gure eredua bereziki
onuragarria da munduko ezagutza behar duten aplikazioetarako. Beraz, bai hez-
kuntza eta baita aisira begira ere aplikatu ahalko litzateke.

Lan honetan garatutako kodea publikoki atzigarri dago.1

1URL: https://github.com/salanueva/CBM
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Transformer Encoder

MLP

Three teddy bears sitting next 
to each other on a couch.

Which american president is most associated 
with the stuffed animal seen here?

QuestionCaption

Tokenizer

[CLS] Three .
···

teddy [SEP] Which ? [SEP]
···

··· ···

Teddy Roosevelt

Answer

(a) CBMBERT

Transformer 
Encoder 

Caption: Three teddy bears sitting 
next to each other on a couch.

Question: Which american president is most 
associated with the stuffed animal seen here?

QuestionCaption

Tokenizer

Three: ? </s>
···

···

Caption </s>

Transformer 
Decoder 

LM 
Head

LM 
Head

LM 
Head

</s>

Teddy Roosevelt

Answer

RooseveltTeddy

(b) CBMT5

3.2 Irudia – Proposatu ditugun CBM ereduen eskemak.

3.2 Metodologia

Atal honetan inplementatu ditugun ereduak, erabilitako atazak eta ikasketa algo-
ritmoak deskribatu ditugu. Inplementazio lanerako Pytorch (Paszke et al., 2019),
Pytorch Lightning eta Transformers (Wolf et al., 2020) liburutegiak erabili ditugu.

3.2.1 Inplementatutako Ereduak

Goiburukoetan oinarritutako eredua (CBM)

Gure goiburukoetan oinarritutako eredua, CBM deritzoguna (Caption Based Mo-
del), bi pausotan banatzen da: (i) goiburuko sortzaile sistema batek irudi baten
deskribapen motz bat sortzen du eta (ii) hizkuntza-eredu batek irudi horri buruz-
ko galdera bat erantzuten du, irudiaren informazio iturri gisa goiburukoa bakarrik
erabiliz.

Lehenengo pausoa burutzeko OSCAR eredua (Li et al., 2020) erabili dugu.
Hainbat modalitate anitzeko atazetan artearen egoera zehazten duen transformer
kodetzailea da, irudi goiburuko ataza hauetako bat izanik. Modalitate anitzeko
transformer-etan ohikoa den bezala, OSCAR ereduak Faster R-CNN (Ren et al.,
2015) deitzen den aurrentrenatutako objektu detektore bat erabiltzen du irudi es-
kualdeen ezaugarriak eta eskualde horiei dagozkien etiketak lortzeko. OSCAR-en
aurrentrenamenduan zehar ezaugarri eta etiketa hauek eskuz anotatutako goiburu-
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koekin batera erabiltzen dira, (Anderson et al., 2018) lanean bezala. OSCAR-en
goiburuko sormen gaitasuna antzekoa da bere bi tamaina ezberdineko bertsioetan.
Horregatik, oinarrizko eredua erabili dugu gure esperimentu guztietarako, hots,
bietatik txikiena.

OSCAR eredua goiburuko sorkuntzan doitzeko pausoan, OK-VQA atazaren
ebaluazioan dauden irudi eta goiburukoen azpimultzo bat erabili zen. Esperimen-
tuen zuzentasuna bermatzeko eta kutsadura arazoak saihesteko aurrentrenatutako
OSCAR eredua goiburuko sorkuntza atazan doitu dugu. Horrela, ebaluazioko ins-
tantzia hauek entrenamendu prozesutik kanpo utzi ditugu.

Bigarren pausorako bi hizkuntza-eredu ezberdin erabili ditugu: BERT eredua,
modalitate anitzeko ereduekin konparaketa zuzenak egiteko, eta T5 familiako ere-
duak, handituz doazen hizkuntza-ereduen gaitasuna aztertzeko.

CBMBERT. Lehen hurbilpen honetan, BERT-base transformer kodetzaile au-
rrentrenatua erabili dugu hizkuntza-eredu gisa. Goiburuko eta galdera tokeniza-
tuen sekuentziak elikatzen dizkiogu BERT ereduari T (0) = {t(0)i |i = 1, . . . , nt}
eta, ondoren, [CLS] edo sarrera sekuentziaren lehen tokenaren irteera jasotzen du-
gu: t(nl)

1 , non nt sekuentziaren token kopurua eta nl transformer ereduaren geruza
kopurua diren (ikus 3.2a. Irudia).

Hizkuntza-eredua VQA atazetan doitzeko, sailkapen burua gehitu diogu [CLS]
tokenaren irteera bektoreari. Nahiz eta VQA (Antol et al., 2015; Goyal et al.,
2017) eta OK-VQA (Marino et al., 2019) atazek domeinu irekiko erantzunak izan,
lan honen garapenean zehar, artearen egoerako ereduek sailkapen arazo bezala
planteatu zuten ataza (Zhang et al., 2021; Marino et al., 2021), entrenamenduko
datuetatik eratorritako hiztegi itxiak definituz. Joera hau jarraituz, gure sailkapen
burua geruza ezkutu bat duen geruza anitzeko pertzeptroi edo MLP batekin eraiki
dugu, bere sarrera bezala t(nl)

1 jasotzen duena. MLP hau 3.1. Ekuazioan definitzen
dugu.

h = LayerNorm(GELU(Wht
(nl)
1 + bh))

ŷ = Softmax(Wŷh+ bŷ)
(3.1)

MLP honen geruza ezkutuan GELU aktibazio funtzioa erabiltzen dugu nor-
malizazio geruza bat (Ba et al., 2016) aplikatu aurretik. MLP honen parametro
ikasgarriak Wh ∈ Rdh×dh , bh ∈ Rdh , Wŷ ∈ Rdh×nlabel eta bŷ ∈ Rnlabel dira, non
nlabel sailkapen atazan definitutako erantzun kopurua eta dh geruza ezkutuaren
dimentsionalitatea den, gure kasuan dh = 768 izanik.
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CBMT5. Gure bigarren hurbilpenean T5 transformer kodetzaile deskodetzaile
aurrentrenatuak erabili ditugu (Raffel et al., 2020). Lan hau garatu zenean eredu
hauek artearen egoera definitzen zuten galdera-erantzute atazetan. Tamaina ez-
berdineko bost T5 eredu daude publikoki eskuragarri, txikienak 60M parametro
eta handienak 11B izanik. CBMBERT jarraituz, T5 ereduei goiburuko eta galdera
sekuentzia tokenizatuak elikatzen dizkiegu ere bai, T (0) = {t(0)i |i = 1, . . . , nt}.
Hala ere, esaldi bakoitzaren hasieran “caption:” eta “question:” bezalako au-
rrizkiak gehitu ditugu. Honako hau T5-en aurrentrenamenduan erabilitako testuz-
ko baldintzak ahal den heinean imitatzeko burutu da, hizkuntza-ereduak aurren-
trenamenduan ikasitakoa hobeto aprobetxatzen lagunduz. BERT ez bezala, T5
hizkuntza-eredu sortzailea da. Beraz, erantzun bat sailkatu beharrean, T5ek modu
irekian sortzen du erantzuna, hurbilpen honetan sailkapen burua alde batera utziz
(ikus 3.2b. Irudia).

Modalitate anitzeko transformer-a (MMBERT)

Gure CBMBERT eredua transformer arkitekturan oinarritutako modalitate anitzeko
MMBERT ereduarekin (Marino et al., 2021) konparatu dugu. BERTen aldaera ho-
nek eskualde bisualen eta galderen adierazpen bektorialak erabiltzen ditu sarrera
gisa. Beste hitzetan, BERT testuzko sarrerak soilik prozesatzeko diseinatuta da-
goen bitartean, MMBERTek bere bektore geruza egokitzen du ezaugarri bisualak
jaso ahal izateko ere bai.

Faster R-CNN eredua erabili dugu nv eskualde bisualen ezaugarriak V =
{v1, . . . ,vnv} kalkulatzeko. vi ∈ Rdv bakoitzak irudiko objektu bat adierazten
du, non gure kasuan dv = 2048 den. V ezaugarri bisualek ez dute objektuen
posizioa irudian kodetzen, arazo hau ezaugarri bakoitzari dagokion kaxa ingura-
tzailearen koordenatuak konkatenatuz konpondu daitekeelarik. Hasierako espe-
rimentu batzuk burutu ondoren informazio gehigarri honek VQA eta OK-VQA
atazei ez diela laguntzen ondorioztatu genuen.

Erabili dugun Faster R-CNN-aren bertsioak ResNeXt-152 (Xie et al., 2017)
erabiltzen du bizkarrezur eredu gisa, eta MMF liburutegiko inplementazioa erabili
dugu irudi eskualdeen ezaugarriak kalkulatzeko.

CBM eta MMBERT ereduen arteko konparaketa errazteko [CLS] tokenaren ir-
teera bektorea erabiltzen dugu MLP sailkatzailea elikatzeko. Kontuan izan hau
ez dela jatorrizko MMBERT (Marino et al., 2021) ereduaren parekoa, jatorrizko in-
plementazioak azken transformer geruzako irteera bektore guztien batezbestekoa
erabiltzen baitu sailkatzailea elikatzeko.

36



3.2 METODOLOGIA

VQA: What is the weather like? cloudy
OK-VQA: Why would one suspect that this is 
not chicago? sign

VQA: What color is the bear? brown
OK-VQA: What species of bear is this? grizzly

VQA: Are the animals in captivity? yes
OK-VQA: Which valuable material grows on this 
animal's face? ivory

3.3 Irudia – VQA 2.0 eta OK-VQA datu-multzoen adibide batzuk. VQA ataza-
ko galderak irudiaren edukiari buruzkoak dira, eta OK-VQA atazako galderek,
berriz, kanpo ezagutza behar dute.

Galderatan oinarritutako eredua (QBERT)

Goiburukoen ekarpena neurtu nahi dugunez, sarrera gisa galdera bakarrik jasotzen
duen eredu bat entrenatu dugu ere bai, irudiari buruzko informaziorik jasotzen ez
duena. Eredu horri QBERT deritzogu eta CBMBERT ereduaren ablazio gisa ikus
daiteke.

3.2.2 VQA Datu-multzoak
Gure esperimentuetarako datu-multzo nagusia OK-VQA (Marino et al., 2019) da,
modalitate anitzeko ataza honek hizkuntza-ereduen ezagutza inplizituaren erabi-
lera ebaluatzea ahalbidetzen baitu. Era berean, VQA 2.0 (Goyal et al., 2017) datu-
multzoaren gainean esperimentuak egin ditugu, bi arrazoik motibatuta: (i) ereduen
doitze prozesuan datu osagarri gisa erabiltzeko (OK-VQA atazan doitu aurretik);
eta (ii) ereduen arteko errendimendu ezberdintasunak bi eszenario ezberdinetan
aztertzeko: VQA ataza estandar batean, eta baita ezagutza behar handiko VQA
ataza batean ere. 3.3. Irudian bi datu-multzoen adibideak azaltzen dira.

VQA 2.0

Datu-multzo honek irudiei buruzko galdera irekiak ditu. Galdera hauek objek-
tuak eta hauen atributuak irudian identifikatzen, erlazioak detektatzen eta objek-
tuak kontatzen zentratzen dira. Datu-multzo hau COCO datu-multzotik (Lin et al.,
2014) erauzita dauden 204K irudiz eta 1.1M galderaz osatuta dago, galdera bakoi-
tzak 10 giza anotazio dituelarik balizko erantzun gisa. Ataza hau ebazteko uneko
artearen egoera ez zen testu sorkuntzan oinarritzen. Izan ere, hauen paradigma
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nagusia aldez aurretik definitutako erantzun sorta baten gaineko sailkapena buru-
tzea da. Hiztegi hau entrenamendu instantzien erantzun ohikoenak batuz sortu da,
eta VQA 2.0ren kasuan 3.129 erantzun posible definitu dira.

VQA 2.0 datu-multzoa hiru azpimultzotan banatzen da: entrenamendua (train),
garapena (val) eta ebaluazioa (test). VQA 2.0-ko garapeneko irudi batzuk OK-
VQA atazako ebaluazio zatian berrerabiltzen dira. Beraz, edozein kutsadura saihes-
teko, ez dugu VQA 2.0-ko garapen zatia erabiltzen ez entrenamendurako eta ezta
hiperparametroak aukeratzeko ere.

VQA atazetarako ebaluazio metrika estandar bat proposatu zen (Antol et al.,
2015). Metrika horretan sistemaren erantzun bat erabat zuzena dela zehazten da
hamar giza anotazioetatik gutxienez hirutan erantzun hori agertzen bada. Anota-
zio horietan erantzun jakin bat x aldiz agertzen bada, asmatze-tasa metrika hau
3.2. Ekuazioan definitzen da.

acc = min
(x
3
, 1
)

(3.2)

Horrez gain, metrika honekin ereduen ebaluazioa anotatzaileen arteko adosta-
sunarekin konparatu nahi zen (Antol et al., 2015). Giza anotazioetan 10 instan-
tzia bakarrik daudenez, asmatze-tasa kalkulatzeko 10 anotazioetatik 9 aukeratzeko
konbinazio guztiak hartzen dira kontuan. Horrela, 9 anotazioko konbinazio bakoi-
tzarekin 3.2 kalkulatzen da, metrika honen amaierako balioa konbinazio guztien
arteko batezbestekoa izanik.

OK-VQA

OK-VQA datu-multzoa COCO datu-multzoko 14.031 irudiren eta eskuz anotatu-
tako 14.055 galderaren gainean eraiki da. VQA 2.0 atazan bezala, galdera bakoi-
tzak 10 giza anotazio ditu eta metrika bera erabiliz ebaluatzen da. Ezagutza behar
handiko VQA datu-multzo gisa, galdera bakoitza erantzuteko iruditik kanpoko
ezagutza eskuratu behar da. Hala ere, kanpo ezagutza hori ez dago ez hornitua
ezta identifikatua ere, hots, ez dago zeregin horretarako eskura dauden ezagutza
iturrien zerrendarik, ataza ebaztea zailduz.

Datu-multzo honen bi bertsio daude publikoki atzigarri. Bertsio bakoitzean
erantzunak nola normalizatzen diren aldatzen da, erantzunen erro bilaketa algorit-
moa aldatuz. OK-VQA v1.0 bertsioan erabiltzen den erro bilaketak existitzen ez
diren hitzak itzultzen ditu kasu batzuetan (adibidez, “poni tail”, “pony tail” beha-
rrean). OK-VQA v1.1-ean erro bilaketa ezberdin bat aplikatzen da, erantzunen
hiztegi koherenteagoa lortuz. Esperimentu guztietan OK-VQA v1.1 erabili dugu.
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3.2.3 Ikasketa Algoritmoa
VQA landu duten aurreko lanetan ez bezala, ez dugu entropia gurutzatu bitarra
erabiltzen gure sailkapen ereduetan. Izan ere, hasiera batean egindako esperimen-
tuek klase leuneko entropia gurutzatuak (soft cross entropy edo SCE) azkarrago
konbergitzen duela erakutsi zuten. SCE galera funtzioa 3.3. Ekuazioan definitu
da. Bertan, y VQA atazan erabiltzen den ebaluazio metrikak (ikus 3.2. Ekuazioa)
erantzun posible guztiei esleitzen dien balioez osatutako probabilitate bektorea da.

LSCE(y, ŷ) = −y · log ŷ (3.3)

CBMT5en inguruan, eredu sortzaile hauek doitzeko entropia gurutzatua erabili
dugu. Ondorioz, ereduak sarrera sekuentzia bakoitza dagokion irteera sekuentzia-
ri mapatzen ikasten du. Hala ere, honela doitzeak VQA atazetan aurki ditzakegun
giza anotazioekin talka egiten du, galdera bakoitzak hainbat balizko erantzun ditu
eta. Hori konpontzeko, entrenamendu aro bakoitzean balizko erantzun bat auke-
ratzen dugu irteera sekuentzia gisa.

Aurretiazko esperimentuek jada erakutsi zuten nola erantzun posible guztieta-
tik ausaz bat aukeratzea kaltegarria zela. Azken finean, hainbat erantzunek akats
ortografikoak dituzte, karaktere kate hutsak dira edota ez daukate zentzurik. Ho-
ri dela eta, doikuntza fasean zehar VQA ebaluazio metrikarekin puntuazio osoa
lortzen ez dituzten erantzunak baztertzen ditugu. Beste hitzetan, gutxienez bi ano-
tatzailek emandako erantzunak bakarrik hartzen ditugu kontuan 2.

3.3 Esperimentuak
Atal honek gure esperimentuen ezarpenen xehetasunak ematen ditu, eta 3.2.1.
Atalean definitutako ereduen errendimendua erakusten du artearen egoerarekin
alderatuz ere bai. Gainera, analisi sakon bat egiten da antzemandako hobekuntzak
nondik datozen ulertzeko.

2Galdera batek ez baditu arau hauek betetzen dituen erantzunik, galdera hau ez da erabiltzen
entrenamendurako. OK-VQA atazako entrenamendu azpimultzoan 112 instantzien kasua da.
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3.3.1 Esperimentazio Ezarpenak
Erabilitako hiperparametroak (Marino et al., 2021) lanetik hartu ditugu CBMBERT,
MMBERT eta QBERT ereduen esperimentu guztietarako. Doikuntza bakoitza 88K
pausotan burutzen dugu AdamW optimizatzailea (Loshchilov and Hutter, 2017)
eta 56ko sorta tamaina erabiliz. Ikasketa-tasaren aldetik 5 · 10−5eko balio maxi-
moa definitzen dugu, kosinu planifikatzailea aplikatuz entrenamenduan zehar 2K
pausoko beroketa linealarekin.

CBMT5 ereduei dagokienez, tamaina ezberdineko bost T5 eredu daude eskura,
60M eta 11B parametro artekoak. Eredu guztiek OK-VQA atazan duten errendi-
mendua erakusteko, aurretik aipatu ditugun hiperparametroak erabili ditugu on-
dorengo aldaketekin:

• Tamaina ezberdinetako ereduek konbergitzeko entrenamendu pauso kopu-
ru ezberdinak behar dituzte. Kopuru hau zehazteko ondorengo metodolo-
gia proposatzen dugu. Entrenamendu instantzien %20a erabili dugu gara-
penerako, gelditzen den %80a doikuntzarako erabiliz 20K pausotan zehar.
Ondoren, garapenean VQA ebaluazio metrika hoberena duen pausoarekin
gelditzen gara. Prozesu hau hiru aldiz egiten dugu garapen instantzia ber-
dinak erabiliz. Horren ondoren, hiru entrenamenduen batez besteko pauso
kopurua kalkulatzen dugu hiperparametro honen balio finala zehazteko.

• Entrenamendu pauso kopurua ereduaren tamainaren arabera aldatzen denez,
doikuntza prozesuan zehar 5 ·10−5eko ikasketa-tasa konstante bat erabiltzea
erabaki dugu. Beraz, ez dugu beroketa edota entrenamendu pausoetan bal-
dintzatzen diren ikasketa-tasa planifikatzailerik erabiltzen.

Sailkapen ereduekin egindako esperimentu guztiak 12GB-eko vRAM memo-
ria duen GPU bakar batean burutu dira, gehienez 12 orduko iraupena izan dute-
larik. CBMT5 eredu handiagoekin egindako esperimentuetan, ordea, 4 NVIDIA
A100 GPU erabiltzera iritsi gara, bakoitzak 80GB vRAM dituelarik. Ereduak
handitzen doazen heinean, GPU kopurua eta hainbat hiperparametro aldatzen joan
gara sorta tamaina efektiboa berdin mantentzeko helburuarekin. Gainera, 11B pa-
rametroko ereduarekin DeepSpeed-en ZeRO Stage 2 optimizazio algoritmoa era-
bili behar izan dugu (Rajbhandari et al., 2020), CPU-aren memoria GPU-arekin
konpartitzea ahalbidetuz. Hala ere, entrenamendu iraupena gehienez 4 ordukoa
izan da kasu honetan, entrenamendu pauso gutxiago behar baitira beste ereduekin
konparatuz CBMT5 handiena doitzeko.

Emaitza kontsistenteak lortzeko esperimentu bakoitza hiru aldiz burutu dugu,
ebaluazio metrikaren batez besteko balioak eta desbideratze estandarrak emanik.
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3.3 ESPERIMENTUAK

Eredua Asmatze-tasa + VQA doikuntza Parametroak

QBERT 21,2 ±0,2 23,0 ±0,2 112M
MMBERT 29,6 ±0,6 35,7 ±0,3 114M
CBMBERT (ours) 32,5 ±0,4 36,0 ±0,4 112M

3.1 Taula – Gure hiru sailkapen ereduen errendimendua OK-VQA atazan (hu-
rrenez hurren, galderetan bakarrik oinarritutako eredua, irudietan oinarritutakoa
eta goiburukoetan oinarritutakoa). Emaitzak VQA atazan aurretik doitu gabe eta
doituta daude zatituta zutabeetan. VQA-ren batez besteko puntuazioa eta desbi-
deratze estandarra erakusten dugu 3 entrenamenduetan zehar.

3.3.2 Irudi eta Goiburukoen Erabilera

3.2.1. Atalean aurkeztutako hiru ereduen emaitzak ageri dira 3.1. Taulan. Bertan
OK-VQA atazan doitutako ereduen emaitzak aurki daitezke, baita aurretik VQA
atazan doitu diren ereduen emaitzak ere. Kontuan izan eredu hauek arkitektura,
tamaina eta gure entrenamendu aurreko pisuak partekatzen dituztela.

Ikus dezakegunez, ereduak galderekin bakarrik elikatzeak (QBERT) errendi-
mendu oso baxua ematen du beste bi sistemekin alderatuta, 13 puntu gutxiago
arte lortuz. Honek irudiaren edozein adierazpen erabiltzea (bai testuala eta bai-
ta bisuala ere) funtsezkoa dela erakusten du galderei zuzen erantzuteko. Gaine-
ra, VQA-ren aurrentrenamenduak dakarren hobekuntza eredu ezberdinen artean
konparatzeak gehiago bermatzen du esandakoa. Izan ere, QBERT ereduak 2 pun-
tu baino gutxiago hobetzen du aurrentrenamendu honen ondorioz, eta beste biek,
berriz, 4-6 puntu gehiago lortzen dituzte.

Goiburukoen ekarpena. CBMBERT eta MMBERT ereduen errendimendua kon-
paratzen dugunean, ikusmen-testu aurrentrenamendurik ez dagoenean CBMBERT

hobeto dabilela ikus dezakegu OK-VQA atazan. Hala ere, eredu horiek antzeko
ataza multimodal batean entrenatzen ditugunean (kasu honetan, VQA 2.0) bien
asmatze-tasak 4-6 puntu handitzen dira, antzeko emaitzak lortuz.

OK-VQA atazaren entrenamendu instantzia kopurua oso txikia da VQA-rekin
konparatzen badugu (9K vs. 410K instantzia). Gure ustez, OK-VQA atazan
MMBERT-en doikuntza ez da nahikoa sarrera modalitate berrira egokitzeko. Hala
ere, CBMBERT-ek testu hutsa erabiltzen duenez, entrenamendu txikiarekin doikun-
tza burutzea eraginkorragoa dela ikusi dugu.

41
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Ereduak Asmatze-tasa Param.

CBMT5-Small 29,2 ±0,2 60M
CBMT5-Base 36,1 ±0,5 220M
CBMT5-Large 40,8 ±0,4 770M
CBMT5-3B 44,0 ±0,7 3B
CBMT5-11B 47,9 ±0,2 11B

3.2 Taula – CBMT5 eredu sortzaileen
errendimendua OK-VQA atazan.
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3.4 Irudia – CBMT5 ereduen tamaina eta
hauen errendimenduen arteko korrelazioa.
Ardatz horizontala eskala logaritmikoan
dago.

3.3.3 Hizkuntza-ereduen Tamaina
T5 ereduak aldez aurretik galderei erantzuteko hainbat atazetan doitu direnez, zu-
zenean OK-VQA atazan burutzen dugu doikuntza, hots, ez dugu beste ikusmen-
testu ataza batean doikuntzarik burutzen aldez aurretik.

3.2. Taulan, OK-VQAn doitu eta ebaluatutako tamaina ezberdineko CBMT5

ereduen emaitzak ageri dira. Kontuan hartu CBMT5-Base eta VQA-n doitutako
CBMBERT ereduek emaitza konparagarriak lortzen dituztela. Esperotako emai-
tzak dira; izan ere, bi ereduak galdera-erantzute atazetan entrenatu dira parametro
kopuru konparagarriak izanik. Azken finean, CBMT5-Base bi BERT-base ereduren
pareko diren kodetzaile eta deskodetzailez dago osatuta.

3.2. Taulako emaitzak 3.4. Irudian agertzen dira, gure ereduen tamaina OK-
VQA atazan duten errendimenduarekiko logaritmikoki proportzionala dela era-
kutsiz. Izan ere, emaitza hauek Kaplan et al., 2020 lanean aipatutako eskalatze
legeak betetzen dituzte. Gure eredurik handienak ere joera hori jarraitzen du, eta
ez dirudi oraindik hobekuntza hau moteltzen ari denik. Emaitza hauek ereduaren
tamainak bere gaitasunean duen garrantzia erakusten dute. Eredu guztiak corpus
berarekin aurrentrenatu eta ataza berdinetan doitu dira. Hala ere, tamaina ezber-
dintasunak eredu handienei laguntzen die, corpus horretatik ateratako informazioa
hobeto aprobetxatuz eta OK-VQA ebazteko behar den kanpoko ezagutza barne-
ratuz. Hau horrela izanik, kontuan hartzekoa da gure eredu handienak modalitate
anitzeko ereduak baino askoz errendimendu altuagoa erakusten duela.
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3.3 ESPERIMENTUAK

Eredua
Asmatze

Tasa Param.

ConceptBERT (Gardères et al. 2020) * 31,4 (+sym. 33,7) 348M
MAVEx (Wu et al. 2022) 35,2 (+sym. 41,4) 353M
KRISP (Marino et al. 2021) 37,1 (+sym. 38,9) 116M
RVL (Shevchenko et al. 2021) *† 37,3 (+sym. 39,0) 208M

PICa-Base (Yang et al. 2022) 42,0 (+tags 43,3) 175B
PICa-Full (Yang et al. 2022) (Ensemble) 46,9 (+tags 48,0) 175B

CBMBERT (ours) 36,0 112M
CBMT5-11B (ours) 47,9 11B

3.3 Taula – OK-VQA atazaren artearen egoera. +sym. ereduari ezagutza sinbo-
likoa txertatu zaiola adierazten du. +tags etiketak, berriz, objektu etiketen erabi-
lera adierazten du (goiburukoekin batera). * duten ereduen emaitzak OK-VQA
v1.0 erabiliz daude kalkulatuta, eta † ikonoak kutsadura arazoak adierazten du
(ikusi testuan).

Izan ere, ez dago argi modalitate anitzeko eredu handiagoek gure CBMT5 han-
dienaren emaitzetara iristeko gaitasuna lortuko dutenik. Lan hau garatzean ezin
izan genuen hipotesi hori frogatu, une horretan ez baitzegoen tamaina bereko ere-
du konparagarririk publikoki eskuragarri. Hala ere, ezagutza behar handiak di-
tuzten atazetan, hala nola OK-VQA atazaren kasuan, egungo modalitate anitzeko
ereduek (Lu et al., 2019; Li et al., 2019; Tan and Bansal, 2019) gure CBM ereduak
baino okerrago ibiliko direla uste dugu. Izatez, eredu hauek aurrentrenatzerakoan
erabilitako testuak goiburukoez edota irudiei lotutako deskribapen txikiz osatuta
daude. Corpus mugatu batetik hiztegi eta ezagutza mugatu bat ikasteko aukera
dute soilik, T5 bezalako ereduak eraikitzeko erabiltzen diren corpus aberatsago
eta askoz handiagoen kasuan ez bezala.

3.3.4 Artearen Egoerarekin Konparaketa

3.3. Taulan artearen egoerako ereduren emaitzak ageri dira hiru multzotan ba-
natuta: i) modalitate anitzeko transformer-etan oinarritutako sailkapen ereduak,
ezagutza sinbolikoaren erabilera gehitzen dituztenak; ii) GPT-3 eta testuinguru
bidezko ikasketan oinarritutako eredu sortzaileak; iii) gure goiburukoetan oinarri-
tutako ereduak.
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Sailkapen ereduen artean KRISP (Marino et al., 2021), MAVEx (Wu et al.,
2022) eta RVL (Shevchenko et al., 2021) ereduek antzeko errendimendua era-
kusten dute ezagutza inplizitua bakarrik erabiltzen dituzten aldaeretan, aurrentre-
namenduko ataza eta modalitate anitzeko eredu ezberdinetan oinarrituta badaude
ere. Kontuan izan behar dugu RVL-ek kontaminazio arazo bat duela, OK-VQA
atazako ebaluazio irudiak bere aurrentrenamenduan erabili baitira. Orokorrean
ezagutza sinbolikoa gehitzeak 2 puntuko hobekuntza ekartzen duela antzeman
dugu, salbuespena MAVEx izanik. Izan ere, MAVEx-en kasuan kanpo ezagu-
tza hainbat iturrietatik eskuratzen du, ConceptNet (Speer et al., 2017), Wikipedia
and Google Images-eko ezagutza elkartuz.3

PICa (Yang et al., 2022) GPT3 ereduaz baliatzen da (Brown et al., 2020) ar-
tearen egoera berri bat ezartzeko. Aurreko ereduek ez bezala, testua sortzen du
sailkapena burutu beharrean, eta testuinguru bidezko ikasketaz baliatzen da. Be-
re oinarrizko ereduaren emaitzak (PICa-Base) jada ikusitakoak baino hobeak di-
ra ezagutza sinbolikoaren gehigarririk gabe. Bi teknika ezberdin aplikatuz are
gehiago hobetzen dituzte emaitzak (PICa-Full): i) 5 GPT-3 ereduren bateratzea
burutzea, eta ii) testuinguruan erabilitako adibideen hautaketa egiteko heuristiko
batzuk erabiltzea.

3.3. Taulan bi emaitza azaltzen dira PICa eredu bakoitzeko: i) automatikoki
sortutako goiburukoak bakarrik erabiliz lortutako emaitzak (gure kasuan bezala),
eta ii) automatikoki lortutako objektu etiketak gehitzen dituztenenak, hobekuntza
txikiak erakusten dituztenak.

Gure CBMBERT sistemak modalitate anitzeko transformer-en pareko errendi-
mendua erakusten du. Aipagarria iruditzen zaigu, gure ereduetan ez baitugu zu-
zenean inolako irudi ezaugarririk erabiltzen, goiburukoak baino ez. Kontuan izan
eredu guzti hauen tamainak konparagarriak direla. Gainera, gure eredu generati-
boaren tamaina handitzen badugu, gaur egungo modalitate anitzeko ereduak gain-
ditzen ditugu, PICa-Full ereduaren pareko emaitzak lortuz. Izan ere, CBMT5-11B-
ek goiburukoak bakarrik erabiltzen dituen PICa-Full baino emaitza hobeak lortzen
ditu, gure eredua 15 aldiz txikiagoa bada ere.

3.3.5 Analisia

Atal honetan hainbat esperimentu gehiago burutzen ditugu. Lehenik eta behin,
OK-VQA atazan lortutako emaitzak VQA 2.0 atazakoarenekin konparatzen ditu-

3Emaitza hau 3 MAVEx ereduen bateratzearekin lortu da, hirurek modalitate anitzeko trans-
former bera partekatzen dutelarik. MAVEx eredu batek 40,3ko asmatze-tasa lortzen du.
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Eredua Asmatze-tasa
MMBERT 65,8

PICa-Full 56,1
CBMBERT (ours) 59,6

3.4 Taula – MMBERT eta testuzko sarrera bakarrik jasotzen duten bi ereduren
(PICa-Full eta CBMBERT) errendimendua VQA 2.0 atazako garapen azpimul-
tzoan.

gu, ezberdintasunak arrazoituz. Ondoren, CBMBERT eta MMBERT batzen ditugu
beraien arteko osagarritasuna aztertzeko. Jarraian, CBMBERT gizakiek idatzitako
goiburukoekin doitzen dugu, OSCAR (Li et al., 2020) ereduarekin lortutakoekin
konparatuz. Azkenik, analisi kualitatibo bat egiten dugu sortutako erantzunen gai-
nean.

Emaitzak VQA 2.0 atazan

OK-VQA atazan modalitate bakar eta anitzeko ereduak antzeko emaitzak lortzen
dituzte. VQA 2.0-n, berriz, beste joera bat ikusten dugu. 3.4. Taularen arabe-
ra CBMBERT-ek 59,6ko asmatze-tasa lortzen du, eta MMBERT-ek, berriz, 6 puntu
gehiago. Gure ustez, irudi bat goiburuko bihurtzean informazioa galtzen dela-
ko gertatzen da hori, galderari erantzuteko behar den informazioa berbalizazio
prozesuan gal daiteke eta. Hori bereziki garrantzitsua da VQA 2.0-rako, galdera
gehienak irudiaren edukiari, erlazio espazialei eta objektuen atributuei buruzkoak
baitira (ikus 3.3. Irudia). PICa-ren kasuan antzeko jokaera antzeman dezake-
gu. Eredu honek objektu etiketak erabiltzen ditu ere bai, berbalizazioan daukagun
informazio galera minimizatzeko. Hala ere, ez du gure sistemak bezain ondo fun-
tzionatzen. Are gehiago, ereduaren parametro kopurua 1.000 aldiz txikiagoa bada
ere, gure CBMBERT-ek PICa gainditzen du. Honek entrenamendu kopuru handiak
eskura daudenean doikuntza egiteak daukan garrantzia erakusten du, testuinguru
bidezko ikasketarekin alderatuz behintzat, VQA 2.0-n bezala.

VQA eta OK-VQA atazen arteko errendimendu ezberdintasunak adierazga-
rriak dira. Izan ere, OK-VQA atazan goiburukoek informazio nahikoa ematen
digutela iradokitzen du ezberdintasun horrek, hau da, ezagutza behar handiko
modalitate anitzeko atazetan behar adina informazio ematen digutela. Hala ere,
erantzuna irudian aurki daitekeen galdera-erantzute sistemetan modalitate anitze-
ko transformer ereduak egokiagoak direla dirudite.
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Eredua Asmatze tasa + VQA Doikuntza

Fusio Goiztiarra 32,5 ±0,4 38,2 ±0,8
Fusio Berantiarra 34,0 ±0,4 38,6 ±0,2

3.5 Taula – Fusio goiztiar eta berantiar ereduen errendimendua OK-VQA atazan.

Informazio bisuala eta goiburukoak nahasten

Modalitate ezberdinek kodetzen duten informazioa ezberdina dela eta, CBMBERT

eta MMBERT osagarriak diren aztertu nahi izan dugu. Gure hipotesia CBMBERT-ek
hizkuntza-ereduak bereganatutako ezagutza inplizitua aprobetxatu dezakeela da.
MMBERT-ek, aldiz, irudi eskualdeetan aurki daitezkeen xehetasunak adierazi eta
erabiltzeko aukera du. Beraz, osagarritasuna aztertzeko bi fusio definitu ditugu.

Fusio goiztiarra. Galdera bakoitzeko irudiaren goiburukoa eta ezaugarriak
elikatzen dizkiogu hizkuntza-ereduari galderarekin batera. Sistema hau galdera
batek (testua), goiburuko batek (testua) eta irudiaren eskualdeko ezaugarriek osa-
tutako sarrera multimodal bat prozesatzen duen MMBERT eredua bezala ikus dai-
teke. Eredu hau BERT-base baten pisuekin hasieratzen dugu eta doikuntza ohiko
entrenamendu instantziekin burutzen dugu.

Fusio berantiarra. Kasu honetan, CBMBERT eta MMBERT ereduak bakoitza
bere aldetik entrenatzen ditugu, 3.2.1. Atalean zehaztutako sarrerekin. Horrela,
irteerak inferentzia denboran konbinatzen ditugu azken erantzuna lortzeko. Kon-
binazioa egiteko, bi ereduen irteera probabilitateak biderkatzen dira klase bakoi-
tzeko, irteerako probabilitate handienarekin geldituz.

3.5. Taulan bi fusio eredu hauen errendimendua agertzen da. CBMBERT eta
MMBERT ereduen errendimendua bizpahiru puntutan igotzen dute ia kasu guztie-
tan. CBMBERT-ekin alderatuta hobekuntzarik ez dagoen kasu bakarra VQA aurre
entrenamendurik gabeko fusio goiztiarrarena da. OK-VQA atazaren entrenamen-
du instantzia kopuru txikiak eragina izan duela uste dugu, zailtasunak sortuz mo-
dalitate testual eta bisualen arteko zubia ikasteko. Hala ere, VQA aurrentrenamen-
dua gehitzean ereduek ikusitako datu kopurua izugarri handitzen da, eta antzeko
portaera erakusten dute bai fusio goiztiarreko ereduak eta baita berantiarrak ere.

Bi modalitateen osagarritasuna VQA atazan aztertu da ere bai. Fusio goiz-
tiarrak 67,8 puntuko asmatze-tasa lortzen du VQA 2.0 atazako garapen azpimul-
tzoan, eta fusio berantiarrak, berriz, 67,7 puntu lortzen ditu MMBERT-en errendi-
mendua 2 puntutan hobetuz. Emaitzek gure hipotesia balioztatzen dute, agertoki
honetan irudi eskualdeko ezaugarriak eta goiburukoak osagarriak direla erakutsiz.

46



3.3 ESPERIMENTUAK

Giza goiburukoak

Proposatutako CBM ereduan goiburuko sortzaileak dituen eraginak neurtzeko, gi-
zakiek idatzitako eta OSCAR bidez sortutako goiburukoen arteko aldea erakusten
dugu. OK-VQA ataza COCO (Lin et al., 2014) datu-multzoko irudien gainean
eraikitzen denez, irudi bakoitzak bost goiburuko ezberdin ditu. CBMBERT doitze-
ko goiburuko hauek erabiltzen ditugu OK-VQA atazan, VQA aurrentrenamendu-
rik gabe eta aurreko esperimentuen ezarpen eta hiperparametro berdinak jarraituz.
Esperimentu bakoitza hiru aldiz errepikatzen dugunez, goiburuko ezberdin bat au-
keratzen dugu errepikapen bakoitzeko, goiburuko bera entrenamendu osoan zehar
erabiliz. OK-VQA atazako ebaluazio instantzien irudi bakoitzeko bost goiburuko
ditugunez, eredu bakoitza hiru aldiz ebaluatzen dugu goiburuko aukeraketa pro-
zesu bera jarraituz.

3.1. taulak dagoeneko erakusten du 32,5 ± 0,4ko asmatze-tasa eta desbidera-
tze estandarra lortzen dugula, OSCAR-ekin sortutako goiburukoak erabiliz. Hala
ere, giza goiburukoak erabiltzen ditugunean batezbeste 32,3± 0,3ko asmatze-tasa
lortzen dugu. Bi kasuetan antzeko emaitzak lortzen ditugu, eta OSCAR bidez sor-
tutako goiburukoek CBMBERT ereduak behar adina informazio dutela erakusten
dute.

Analisi Kualitatiboa

Bai CBMBERT-ek bai MMBERT-ek antzeko emaitzak lortzen dituzte VQA aurren-
trenamenduarekin (ikus 3.1. Taula), baina ebaluazio azpimultzoko instantzien
%38,7an bi ereduen erantzuna ezberdina da, horietako bakarra zuzena izanik. 3.5.
Irudian kasu hauetako adibide batzuk ipini ditugu. CBMT5-11B-ren erantzunak ere
gehitu ditugu aurreko emaitzekin konparatzeko.

Goi ezkerreko adibidetik hasita, CBMBERT-ek elefanteak Afrikakoak direla on-
doriozta dezakeela ikus dezakegu; MMBERT-ek, aldiz, ez. Hain zuzen, sortutako
goiburukoak irudian aurkitutako animalia elefante bat dela adierazten du, eta gal-
derari erantzuteko behar den lehen urratsa egiten du. Horrela, hizkuntza-eredua
bere ezagutza inplizitua erabiltzera bideratu dezakegu nahi dugun erantzuna lor-
tzeko. CBMT5-ek forest sortzen du erantzun gisa. Erantzuna guretzat baliagarria
izan daitekeen arren, erantzuna ez dago balizko erantzunen zerrendan, eta ez dugu
ontzat hartzen. Goiko errenkadako beste bi adibideek antzera jokatzen dute. Goi-
burukoak galderaren eta irudiaren arteko lotura errazten du. Galdera bat irudiari
buruzkoa denean (“this fruit” eta “these items", hurrenez hurren) eta goiburukoak
objektu horiek aipatzen baditu (“bananas"eta “traffic light”), hizkuntza-ereduak
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C: A person holding a baby in front of an 
elephant.

Q: Where would you find the animal in the 
background in the wild?

CBMBERT    Africa 
CBMT5-11B  Forest GT  Africa
MMBERT       Wood

C: A man holding a bunch of green 
bananas in a store.

Q: What mineral is found in this fruit?

      CBMBERT    Potassium 
      CBMT5-11B  Potassium          GT  Potassium
      MMBERT       Calcium

C: A white plate topped with meat and a 
salad.

Q: How was the side cooked?

CBMBERT    Fried 
CBMT5-11B  Steamed GT  Grilled
MMBERT       Grilled

C: A bunch of cups sitting next to each 
other in a kitchen.

Q: What drink is being prepared?

      CBMBERT    Tea 
      CBMT5-11B  Coffee               GT  Smoothie
      MMBERT       Smoothie

C: A group of people standing under a 
traffic light.

Q: What should someone do when the 
light on these items is green?

CBMBERT    Go 
CBMT5-11B  Go GT  Go
MMBERT       Stop

C: A baseball player holding a bat on top 
of a field.

Q: In this game how many strikes until you 
are out?

      CBMBERT    100 
CBMT5-11B  3 GT  3
MMBERT       3

3.5 Irudia – OK-VQAko instantziak non CBMBERT eta MMBERT ereduen arteko
batek bakarrik ondo erantzuten duen. CBMT5-11Bek itzulitako erantzunak kon-
parazio gisa jarri ditugu. C OSCARrek sortutako goiburukoak dira. Erantzun
zuzena berdez dago, okerra, berriz, gorriz.

hobeto aprobetxatzen du bere ezagutza inplizitua eta arrazoitzeko duen gaitasuna
galderari erantzuteko. Puntu honekin jarraituz, goiko eskuineko adibidea interes-
garria da. Izan ere, irudiak semaforo gorriak erakusten dituen bitartean, argi ber-
deen eraginei buruz galdetzen da. Horrek MMBERT engainatu dezake argi gorriek
(eta ez berdeek) eragiten duten efektuari erantzuteko baldintzatuz.

3.5. Irudiko beheko errenkadak goiburukoak informazio nahikoa ematen ez
dituen bi adibide erakusten ditu. Lehenengo kasuan, CBM ereduek ez dakite
zehazten ea haragia frijituta, parrilan eginda ala lurrunean egosita dagoen, goi-
burukoak ez baitie galdera horri erantzuteko informazio nahikoa ematen. Hala
ere, MMBERT-ek irudiaren seinale bisualak atzitu ditzake, haragia parrilan egin
dela antzeman dezakeelarik. Bigarren adibidean ere antzeko gauza bat gertatzen
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da. Goiburukoak edariaren osagairik zehazten duen bitartean, irudian frutak ikus-
ten ditugu. Eskuineko adibideko goiburukoak inferentziarako beharrezkoa den
informazioa dauka, baina CBMBERT-ek erantzun okerra itzultzen du. Goiburuko
horrekin, “this game” hitzekin beisbolari buruz hitz egiten ari dela deduzitu deza-
kegu. Hala ere, CBMBERT-ek ezin izan du erantzun hiru strike nahikoak direnik
jokalari bat kanporatzeko; CBMT5-11B and MMBERT-ek, berriz, erantzun zuzena
ematen dute.

Oro har, adibide horiek ezaugarri bisualak eta goiburukoak osagarriak dire-
naren hipotesiari eusten diote. Halaber, gure ereduak abantailak erakusten ditu
ereduaren interpretagarritasunari dagokionez, bereziki gure metodoa oker dagoen
kasuetan antzeman daitekeena. Kasu batzuetan, 3.5. Irudiko behe ezkerreko bi
adibideetan bezala, galderari erantzuteko behar den objektua edo ezaugarria ez
dago goiburukoan. Beste kasu batzuetan, eskatutako informazioa goiburukoan
dago, baina inferentzia okerra da.

3.4 Ondorioak
Kapitulu honetan VQA sistema bat aurkezten dugu, goiburuko baten bidez irudiak
deskribatzen dituena eta gero testu datuekin bakarrik lan egiten duena. Eredu ho-
nek OK-VQA atazan emaitza oso onak lortzen dituela ikusi dugu, iruditik kanpo
dagoen ezagutza eskuratzeko beharra duten galderetan abantaila erakusten due-
larik. Gure analisiak irudiak berbalizatzean dagoen informazio galera testua ba-
karrik prozesatzen duten hizkuntza-ereduen inferentzia gaitasun handiagoarekin
orekatzen dela erakusten du. Era berean, hizkuntza-eredu batek duen gaitasuna-
ren garrantzia ere erakusten dugu, bertan dagoen ezagutza inplizitua aprobetxa-
tuz, artearen egoeraren emaitzak lortuz, gaur egungo modalitate anitzeko ereduen
errendimendua alde handiarekin gaindituz eta 15 aldiz handiagoko GPT-3 ere-
duaren emaitzak berdinduz. Modalitate anitzeko ereduekin alderatuta, publikoki
atzigarri dauden hizkuntza-ereduen tamaina edota gaitasuna askoz handiagoa da,
ezagutza behar handiko atazetan onuragarria dela erakusten dugularik.
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Etorkizunean, irudien deskribapen aberatsagoek emaitzak are gehiago hobetu
ditzaketen aztertu nahiko genuke. Gainera, ezagutza grafo sinbolikoak testuarekin
bakarrik lan egiten duten hizkuntza-eredu handietan txertatzea ikertu nahi dugu.
Izan ere, OK-VQA atazako sailkapen ofizialean4 dauden lehenengo postuetako
ereduek ez dute kanpo ezagutza iturririk erabiltzen, eredu hauek hizkuntza-eredu
handietako ezagutza inplizitua erabiltzen baitute ezagutza iturri gisa (Shao et al.
2023; Hu et al. 2022).

4https://okvqa.allenai.org/leaderboard.html. (2024/07/06ean atzituta)
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4. KAPITULUA

Arrazoinamendu Espaziala Ikasten
Hizkuntza-ereduetan

4.1 Motibazioa eta Ekarpenak
Ezker eta azpian bezalako erlazio espazialak era naturalean oinarritu daitezke iru-
dietan. Hau horrela, ikusizko hizkuntza-ereduak (vision-and-language models
edo VLM) testua mundu errealeko kontzeptuetan oinarritzeko aukerarik egokiena
dirudite. Hala eta guztiz ere, CLIP (Radford et al., 2021), VisualBERT (Li et al.,
2019), LXMERT (Tan and Bansal, 2019) edo ViLT (Kim et al., 2021) bezalako xe-
de orokorreko VLM-ek erlazio espazialen gainean arrazoitzeko arazoak dituztela
antzeman da (Liu et al., 2022b: 2023). Egoera are okerragoa da testua soilik pro-
zesatzen duten hizkuntza-ereduentzat, non erlazio espazialen arrazoinamenduan
VLM-en atzetik geratzen diren (Liu et al., 2022b).

Oinarritze eta arrazoinamendu espazialak oso interesgarriak dira testua soi-
lik erabiltzen den atazetan (Liu et al., 2022b; Mirzaee et al., 2021; Mirzaee and
Kordjamshidi, 2022). Testu hutsezko ataza horiek ebazteko alternatiba bat VLM-
ak testu sarrerarekin soilik elikatzea izango litzateke. Hala ere, hurbilpen hau jada
landu da eta eraginkorra ez dela ikusi da (Tan and Bansal, 2020). Azken finean,
VLM hauek ez dira testu hutsezko atazetan azaltzen diren testu aberats eta anitze-
tan entrenatu, eta horrek VLM-en ahalmena oztopatzen du testu hutsezko atazak
ebazterako garaian.

51
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Caption: The cat is inside the toilet

Object detector object
labels

location 
tokens

LM Answer:
False

bounding 
boxes

Textual 
scene 

description

objects

4.1 Irudia – Erlazio espaziala duen goiburuko bat eta dagokion irudi bat emanda,
VSR atazan goiburukoa irudiari dagokion ala ez zehaztu behar da. Datu multzoa-
ren testu hutsezko alternatiba bat proposatzen dugu, non objektu detektore batek
irudian azaltzen diren objektuen etiketak eta kokapenak itzultzen dituen (kaxa
inguratzaileetatik eratorritakoak). Informazio hau irudietan azaltzen diren esze-
nen testuzko deskribapen gisa erabiltzen dira. Deskribapen hau eta goiburukoa
hizkuntza-eredu batera elikatuz, hizkuntza-ereduen oinarritze espazialeko gaita-
sunak aztertu ditzakegu.

Kapitulu honetan, beste bide bat aztertzen dugu eta testu hutsezko hizkuntza-
ereduen oinarritze espazialean zentratzen gara. Ikusizko informazioa testura itzul-
tzeko egungo joera jarraituz (Yang et al., 2022; Zeng et al., 2022a; Wang et al.,
2022b; Liu et al., 2022a), testu tokenak era berri batean erabiltzea proposatzen du-
gu, mundu errealeko eszenak irudikatzeko eta aurrentrenatutako hizkuntza-eredu-
ak hobeto aprobetxatzeko. Xehetasunetan sartuz, kokapen tokenak erabiltzea pro-
posatzen dugu eszena bateko objektuen posizioak eta tamainak zehazteko.

Erabilitako kokapen tokenak dagoeneko hizkuntza-ereduaren hiztegian dau-
den zenbakien tokenak erabiliz definitzen dira, hots, tokenizatzailean zehaztutako
hiztegian agertzen diren tokenak erabiliz. Horrela, objektu baten posizio eta ta-
maina zehazteko lau kokapen token eta objektuaren izena erabiltzen ditugu (ob-
jektuaren hainbat atributu gehitu ditzakegularik ere bai). Irudiaren testuzko adie-
razpen honi esker, hizkuntza-ereduek ezker1 bezalako erlazio espazialak dagoz-
kien kokapen token sekuentziekin erlaziona ditzakete, erlazio horiek oinarritzeko
modua eskainiz.

1Hemendik aurrera erabilitako erlazio espazial esplizituak ingelesez azaltzen dira, VSR-ren
goiburukoekin bat egiteko.
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Gure hipotesia kokapen token horiek hizkuntza-ereduen erlazio espazialak oi-
narritzeko modu eraginkor bat ahalbidetzen dutela da. Hau balioztatzeko, Visual
Spatial Reasoning (VSR) datu-multzoaren bertsio berbalizatu batean egin ditugu
esperimentuak (Liu et al., 2023). Datu multzoak irudi eta goiburuko pareak di-
tu, non goiburukoak irudian agertzen diren bi objekturen arteko erlazio espazial
bat zehazten duen. Horiekin batera, etiketa boolear bat dator, goiburukoa irudian
betetzen den ala ez zehazten duena.

4.1. Irudiak erakusten duen moduan, VSR ataza honela lantzen dugu: (i) ob-
jektu detektore bat erabiliz eszenaren testu deskribapenak lortzen ditugu, (ii) des-
kribapen horietan kokapen tokenak gehitzen ditugu, objektu detektoreak antze-
mandako kaxa inguratzaileen informazioaz baliatuz, (iii) goiburukoa eta eszena-
ren deskribapen testuala kateatzen ditugu eta lortutako token sekuentzia hizkuntza-
ereduari elikatzen diogu, (iv) hizkuntza-eredua sailkapen bitarra burutzeko doi-
tzen dugu. Gainera, aldez aurretik hizkuntza-eredua trebatzeko aukera eskaintzen
dugu guk garatutako datu-multzo espazial sintetikoan (Synthetic Spatial Training
Dataset edo SSTD).

Gure esperimentuen ondorioz, ondorengo ekarpenak egiten ditugu:

1. Kokapen tokenak eraginkorrak dira erlazio espazialak oinarritzeko, gure
ereduaren emaitza positiboek erakusten duten bezala.

2. VSR datu-multzoaren entrenamendu azpimultzoa txikiegia da erlazio espa-
zial eta objektuen kokapenen arteko lotura ikasteko. Hala ere, automatikoki
sortutako SSTD datu-multzoak horretarako aukera ematen du. Bitartean,
hizkuntza-ereduak kokapen informaziorik gabe erabiltzeak huts egiten due-
la erakutsi da.

3. Datu multzo sintetikoan trebatutako hizkuntza-ereduak hein batean orokor-
tu daitezke datu sintetikoetan aztertu ez diren erlazio espazialetara. Bereziki
aipagarria da sakonera informazioa eskatzen duten erlazioen errendimen-
duan bultzada hau antzematea.

4. Testuaz bakarrik baliatzen diren gure hizkuntza-ereduek artearen egoerako
emaitzak lortzen dituzten VLM-ak gainditzen dituzte VSR atazan.

Gure kodea, ereduak eta datu-multzoak edozeinen eskura utzi ditugu2 .

2URL: https://github.com/gazkune/SpatialLM

53

https://github.com/gazkune/SpatialLM


4 ARRAZOINAMENDU ESPAZIALA IKASTEN HIZKUNTZA-EREDUETAN

Grid pos 
(0, 0)

Grid pos 
(3, 2)

Normalize 
W, H

Impose 
4x4 grid

4.2 Irudia – BB koordenatuak kokapen token bihurtzeko adibide bat. Kasu ho-
netan, 4× 4ko sareta tamaina zehazten dugunez, katuaren (kaxa gorria) kokapen
tokenak (0, 0, 3, 2) dira.

4.2 Metodologia

Atal honetan, kokapen tokenen kontzeptua definitzen dugu hizkuntza-ereduetan
erlazio espazialen oinarritzea burutzeko. Gainera, erabili ditugun datu-multzoak
zehazten ditugu, baita maneiatutako ereduak eta hauek doitzeko ezarpenak ere.

4.2.1 Testuzko Deskribapen Espazialak

VSR irudi-testu datu-multzo bat dela kontuan hartuta, testuz deskribatu nahi du-
gun eszena irudi batek definitzen du. Eszena hori testu deskribapen batean adie-
razten dugu artearen egoera den objektu detektore bat erabiliz, VinVL (Zhang
et al., 2021). Irudi bat emanik, VinVL-ek objektuen zerrenda bat sortzen du
hauen izena, atributu eta kaxa inguratzailearen koordenatuekin. Gehiago zehaz-
tuz, VinVL-ek detektatutako objektu bakoitza O = {name, attr1, . . . , attrn, BB}
gisa adierazten da, non BB ∈ R4 kaxa inguratzailearen koordenatuak diren.
BB = {x0, y0,W,H} kaxaren goi ezker erpineko koordenatuak, zabalera eta al-
turaren balio normalizatuak dira.

Ondorengo prozedura jarraitu dugu BB horiek kokapen token bihurtzeko (ikus
4.2. Irudia): i) irudiaren zabalera eta altuera normalizatu [0, 1] tartean, ii) irudia
zatitu (G × G) tamainako sareta erregular batean, eta iii) (x0, y0, x1, y1) balioak
saretan dauden gelaxkaren indizeak erabiliz diskretizatu (x̂0, ŷ0, x̂1, ŷ1) koorde-
natu diskretuak lortzeko. Koordenatu diskretu horiek tokenizatzailetik pasatzean
bihurtzen dira kokapen tokenetan. Ondorioz, detektatutako objektu bakoitzeko
lau kokapen token edo koordenatu diskretuen sekuentzia lortzen dugu. Beraz,
gure irudiaren testu deskribapena Descr(S) = {O0, O1, . . . ON} objektuen ize-
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Caption: The person is ahead of the cow.
Label: True.

Caption: The cat is inside the toilet.
Label: False.

4.3 Irudia – VSR datu-multzoko bi instantzia.

nak, posizioak eta tamainak definitzen dituen sekuentzia bat da. Sekuentzia ho-
rretan objektu bakoitzaren deskripzioak honako formatua jarraitzen du: Oi =
{x̂i

0, ŷ
i
0, x̂

i
1, ŷ

i
1, namei}. Kontuan izan VinVL-ek objektu bakoitzaren atributuen

zerrenda ere itzultzen duela. Kontrakoa adierazi ezean, atributu horiek irudiaren
testu deskribapenean baztertzen ditugu.

VSR atazarako irudi guztien testu deskribapenak sortzen ditugu. Horrela,
datu-multzoan emandako goiburukoekin kateatzen ditugu eta hizkuntza-ereduari
elikatzen dizkiogu. Gaur egungo hizkuntza-ereduek defektuz dauzkaten posizio
bektoreei esker, hizkuntza-ereduek kokapen tokenen ordena eta objektuen izene-
kin duten korrespondentzia behar bezala interpretatzen ikasi dezakete. Adibidez,
4.2. Irudiko katuaren irudian, cat objektuaren deskribapen testuala hau izango
litzateke: 0 0 3 2 cat. Adibide honetan gure sareta tamaina G = 4 dela jakinda,
irudiaren ezkerreko aldea estaltzen duen katu bat dela interpretatzen da. Irudia-
ren objektu guztiekin antzera egingo genuke gure eszenaren testu deskribapena
eraikitzeko.

Kontuan izan VSR-ren kasuan eszena irudi batekin definitzen dela. Baina,
orokorrean, testu edota grafoak bezalako beste modalitate batzuetatik erator geni-
tzake. Esate baterako, eszena baten testu deskribapen naturala emanda (adibidez,
"katu bat mahai baten gainean dago"), eszenaren testu deskribapenak lor litezke
kokapen tokenak gehituz. Hala ere, lan honen irismenetik at utzi dugu, ez baitugu
datu-multzo egokirik aurkitu honetarako. Ikus 4.4. Atala etorkizunean aurreiku-
sita dugun ikerketaren ingurukoak jakiteko.
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Bertsioa Entrenamendua Garapena Ebaluazioa Guztira

random 7.083 1.012 2.024 10.119
zero-shot 5.440 259 731 6.430

4.1 Taula – VSR datu-multzoko instantzia kopuruak.

4.2.2 Erlazio Espazialen Datu Multzoak

VSR Datu Multzoa

VSR datu-multzoak irudi eta testu pare naturalak ditu, ikusmen-testu ereduen oi-
narritze gaitasunak aztertzea ahalbidetzen duena. 4.3. Irudian ikus daitekeenez,
irudi baten testuzko deskribapena daukagu eskura, non irudiko bi objekturen arte-
ko erlazio espaziala esplizituki zehazten den. Erlazio espazial hori egia ala gezurra
izan daiteke irudi horretan. Ataza behar bezala ebazteko, ereduek 65 erlazio es-
pazial ezberdin ondo oinarritzen ikasi behar dituzte, 7 kategoriatan multzokatzen
direnak erlazioaren arabera: albokotasuna (adjacency), norabidea (directional),
orientazioa (orientation), proiektiboa (projective), gertutasuna (proximity), topo-
logikoa (topological) eta bestelakoa (unallocated).

Datu multzoak bi bertsio ezberdin ditu: random eta zero-shot. Lehenengoan
datu-multzorako anotatu diren instantzia guztiak entrenamendu, garapen eta eba-
luazio azpimultzoetan zatituta daude, guztira 10.119 instantzia edukirik. Bigarre-
nean, berriz, instantzia kopurua txikiagoa da, bertsio honen azpimultzo ezberdine-
tan objektu bera agertzea ekidin baita. Horrela, ataza ebazteko erabili den ereduari
ez zaio uzten objektuen arteko agerpenen estatistikak memorizatzen. Murrizketa
hau dela eta, zero-shot azpimultzoak 6.430 instantzia ditu guztira. 4.1. Taulan bi
bertsioen entrenamendu, garapen eta ebaluazio instantzia kopuruak zehazten dira.

VSR datu-multzoaren gainean egindako esperimentuen arabera (Liu et al.,
2023), VLM onenak gizakien errendimendutik oso urrun daude. Gizakiek bi
bertsioetan 95,4 puntuko asmatze-tasa lortzen duten bitartean, random bertsio-
ko eredurik onenak, hau da, LXMERT-ek (Tan and Bansal, 2019), 70,1 inguru-
koa lortzen du, zero-shot bertsioan oraindik gehiago okertuz (63,0). Gizakien eta
VLM-en arteko errendimendu ezberdintasun honek erlazio espazialak hobetzeko
oraindik lan asko egiteko dagoela erakusten du. Kontuan izan ausaz erantzuten
duen eredu batek 50,0 puntuko asmatze-tasa lortuko lukeela.
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Kategoria Erlazio Espazialak

Objektu baten posizioa
top left, bottom left, left, top right,

bottom right, right, top, bottom, center

Bi objekturen arteko
wider, narrower, taller, shorter, larger, smaller

tamaina konparaketa

Bi objekturen arteko surrounding, inside, left of, above, right of,
posizio konparaketa below, overlapping, separated

4.2 Taula – Gure SSTD datu-multzoko 23 erlazioak hiru kategoriatan sailkatuta.

SSTD Datu Multzoa

Erlazio espazial esplizituak dituzten modalitate anitzeko entrenamendu datuak,
irudi eta goiburuko pareez osatuta daudenak, urrikak izan ohi dira. Gure hurbil-
penaren bigarren osagai gisa erlazio espazialak dituen datu-multzo sintetiko bat
eraiki dugu, Synthetic Spatial Training Dataset (SSTD). SSTD hizkuntza-ereduei
kokapen token eta erlazio espazialen arteko loturak erakusteko dago pentsatuta.
Irudi bat emanik, objektu detektore bat erabiltzen dugu testuzko deskribapen bat
sortzeko. Deskribapen hau objektu zerrenda eta kokapen tokenen sekuentzia ba-
tez osatzen da, objektu bakoitzaren kokapen informazioa berbalizatuta emanik.
Bi objektu eta hauen kaxa inguratzaileak kontuan hartuta, arau eta txantiloi sin-
ple batzuk erabili ditugu bi objektuen arteko erlazio espazialei buruzko galdera
bitarrak sortzeko, bai positiboak eta baita negatiboak ere. Alternatiboki, objektu
bakar baten irudiko posizio absolutuari buruz ere galderak sortzen ditugu. 4.4.
Irudiak aurreko pausoak jarraituz sortu dugun adibide bat erakusten du. SSTDren
abantaila garrantzitsuenak hauek dira: i) milaka adibide sor ditzakegu, ii) eskulan
arina eskatzen du, erlazio bakoitzeko arau eta txantiloiak bakarrik zehaztu behar
baitira3, iii) erraz heda daiteke beste erlazio espazialetara, eta iv) datu-multzo hau
testuarekin bakarrik lan egiteko edota ikusmen-testu ataza gisa erabil daiteke.

SSTD eraikitzeko COCO datu-multzoko 2014 bertsioa erabili dugu (Lin et al.,
2014). SSTD-n COCO datu-multzoko entrenamendu eta garapen azpimultzoak
erabili ditugu, COCO-ko instantzien banaketa errespetatuz. Gizakiek anotatuta-
ko kaxa inguratzaileak erabili beharrean, VinVL ereduarekin lortutakoak erabili
ditugu, VinVL-ek eskaintzen duen hiztegiaren tamaina COCO-rena baino askoz
handiagoa baita (1.848 klase 80 beharrean). VinVL-eko klase kopurua handia-

3∼5 orduko lana behar izan dugu lan honetan zehaztutako arauak eta txantiloiak zehazteko.
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Q: Is man right of horse?
Descr: 0 3 16 29 horse 14 7 26 31 man 22 6 
31 31 baby 21 5 28 10 tree 0 5 23 31 
building…
A: Yes.

4.4 Irudia – Irudi batetik SSTD garapenerako sortu dugun instantzia, ondoren-
goak batzen dituena: galdera (Q), deskribapena (Descr) eta erantzuna (A). Irudia
baztertu egiten dugu dena sortu ondoren. Deskribapen partziala erakusten dugu,
kasu honetan 44 objektuz osatuta baitago. Kokapen tokenak 32 × 32ko sareta
diskretu koordinatuak dira, objektu bakoitzaren kaxa inguratzailearen koordina-
tuak zehazten dituztenak. Adibide gisa, zaldiaren kasurako (0, 3) eta (16, 29).

goa denez, COCO-ren klaseen azpiklase kontsidera daitezke. Adibidez, COCO-n
person klasea aurkitzen dugun bitartean, VinVL-eko detekzioetan woman, man,
child edota girl aldaerak ditugu. Honek dibertsitate handiagoa ematen dio SSTD-
ri. Egia da VinVL-ek errore batzuk gehitzen dituela egindako detekzioetan, bai
klase edota kaxa inguratzaileetan. Hala ere, testuarekin bakarrik lanean ibiliko
garenez, detekzioen eta irudien lerrokatzeak guztiz zuzenak ez izateak ez digu
eragiten. Azken finean, detekzioetako klase eta kaxa inguratzaileekin lerrokatuta
dauden erlazio espazial zuzenak sortu nahi ditugu.

SSTD-ko instantziak sortzeko erabili ditugun erlazio espazialen anbiguetate-
rik gabeko zerrenda bat definitu dugu (Johnson et al., 2018) lanean erabilitakoan
oinarrituz. Adibide bat jartzegatik, bi kaxa inguratzaile izanik objektu bat bestea-
ren ezkerretara (left of ) dagoen erabakitzea ez da anbiguoa. Bestalde, kaxa hauek
erabiliz ezin dugu jakin bi objektu hauen arteko gertutasuna, close to erlazioaren
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kasua izango litzatekeena. Izan ere, bi kaxak gertu badaude ere irudiaren planoan,
ez dute zertan sakonera antzekoa izan behar. Honek erlazio batzuetarako irudiak
ematen duen testuinguruaren beharra dagoela erakusten du, kaxa inguratzaileeta-
tik at lortu behar dena. Zentzu horretan, ez gara saiatu SSTD-rako erabili ditugun
erlazioak VSR-koekin bat etortzea, anbiguetaterik ez edukitzearen helburua hartu
dugu aintzat bakarrik eta. Hori dela eta, SSTD oinarritze espaziala behar duten
beste atazetarako erabilgarria izan beharko luke. 4.2. Taulan inplementatutako er-
lazio guztiak eta hauen kategoriak aurki daitezke, erregela sinple batzuen bitartez
zehazten direnak (iruzkin gehiago B.1. Eranskinean). Prozesu hau jarraitzen dugu
SSTD-ko instantzia bat sortzeko:

1. Irudi bat hartu eta detektatu ditugun objektu kopurua begiratzen dugu. Ob-
jektu bat edo biren arteko erlazioak zehaztu ditugunez, 4.2. Taulako hiru
kategorien artean ausaz bat aukeratzen dugu detektatutako objektu kopu-
ruaren arabera. Objektu bat bakarrik detektatu ezkero, zuzenean "Objektu
baten posizioa" kategoria aukeratzen dugu. Bi objektu edo gehiagoren ka-
suan, bi objekturen arteko erlazioei pisu gehiago ematen diegu, hots, %70ko
probabilitatea esleitzen diegu bi objekturen arteko erlazioei eta %30 objektu
batekoei. Kategoria aukeratuta, behar ditugun objektuak ausaz aukeratzen
ditugu (kategoriaren arabera objektu bat edo bi).

2. Sortuko dugun galderaren erantzuna baiezkoa ala ezezkoa izango den auke-
ratzen dugu ausaz, SSTD-n yes eta no erantzunak orekatuta sortzen ditugula
bermatuz. Eskuz zehaztutako berbalizazio txantiloiak erabiliz, galdera sor-
tzen dugu aurreko pausoan aukeratutako kategorian dagoen erlazio espazial
bat ausaz aukeratuz. B.1. Eranskinean aurki daitezke txantiloi hauek.

3. Galdera sortu ondoren irudia berbalizatzen dugu, bi berbalizazio ezberdin
eraikiz: i) VinVL-ek detektatutako objektu guztien konkatenazioa, objektu
bakoitzaren izena bere kokapen tokenekin lagunduz; eta ii) kokapen tokenik
gabeko bertsioa, hots, objektu izenez bakarrik osatutako zerrenda. Beste
berbalizazio batzuk erraz erabili genitzake, goiburukoak adibidez. Hala ere,
alternatiba hauek ez dira interesgarriak gure esperimentuetarako, kokapen
token eta erlazio espazial esplizituen arteko oinarritzea aztertu nahi dugu
gure esperimentazioan.

4. Hortaz, SSTDko instantzia bakoitza galdera, eszenaren testuzko deskriba-
pena eta erantzun batez dago osatuta, testuzko ereduetan irudia alde batera
uzten delarik.
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Prozedura hau jarraituz, irudi bakoitzeko instantzia anitz sortu ditzakegu. Zen-
tzu horretan, SSTD-k ez dauka instantzia kopuru zehatz bat: erabiltzaileak zehaz-
tu dezake zenbat instantzia erauzi nahi dituen irudi bakoitzeko. Gure ikasketa es-
pazialean zehar, aro bakoitzean ausazko instantzia bat sortzen dugu COCO datu-
multzoko entrenamendu irudi bakoitzeko. Honen ondorioz, ereduek aro kopu-
rua bider 80K adibide ezberdin ikusten dituzte entrenamenduan zehar, non 80K
COCO-ko entrenamendu azpimultzoko irudi kopurua den. Azkenik, VSR COCO-
n oinarrituta dagoenez, kontaminazio arazoak ekiditeko ez ditugu VSR-ko gara-
pen eta ebaluazio azpimultzoetan agertzen diren irudiak erabiltzen SSTD-ko en-
trenamendu irudi gisa.

4.2.3 Ikasketa Algoritmoa
Lan honetan ondorengo bi faktoreren garrantzia aztertu nahi dugu: i) kokapen to-
kenen erabilera hizkuntza-ereduetan, eta ii) token hauek erabiltzen ikasteko pro-
posatutako SSTD datu-multzoaren erabileraren onurak. Horretarako, BERT-base
(Devlin et al., 2019) eredua erabili dugu gure hizkuntza-eredu gisa eta era ez-
berdinetan doitu dugu, bai kokapen tokenekin entrenatuz (ala ez) eta baita ere-
dua SSTD-n aurrentrenatuz ere (ala ez). Sailkapen buru bat gehitu dugu [CLS]

bektorearen gainean (t(nl)
1 , non nl transformer kodetzailearen azkeneko geruza-

ren indizea den) sailkapen bitarra burutzeko. Sailkapen buru hau geruza anitzeko
pertzeptroi (MLP) gisa definitu dugu, geruza ezkutu bat gehitu diogularik. Erabi-
litako MLP-a 4.1. Ekuazioan definitzen dugu.

h = LayerNorm(GELU(Wht
(nl)
1 + bh))

ŷ = Sigmoid(Wŷh+ bŷ)
(4.1)

Esperimentuetan zehar tamaina ezberdineko ereduak erabiliko ditugu. Horre-
tarako, BERT-Large eredua erabili dugu (sailkapen burua gehituz 4.1. Ekuazioa
jarraituz), baita T5 familiako ereduak ere (Raffel et al., 2020). Bide batez, ko-
detzaileak bakarrik ez diren ereduen azterketa burutu dugu ere bai, T5 familiako
ereduak kodetzaile eta deskodetzaile banaz osatuta daudelarik. T5 ereduei sa-
rrerako testua elikatzeko txantiloi bat erabili dugu, esaldi baten aurretik aurrizki
batzuk ezarriz. Adibidez, goiburuko baten aurretik “caption:” zehazten dugu
eta eszenaren deskribapenerako, aldiz, “context:”. Honen helburua T5 ereduen
aurrentrenamenduan erabilitako sarrera imitatzea da, hizkuntza-ereduak aurren-
trenamenduan ikasitakoa hobeto aprobetxatzeko pentsatua. Azkenik, T5 eredu
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generatiboa denez, testu irekia sortzen du eta, beraz, “yes” eta “no” tokenak sor-
tzeko probabilitateak konparatzen ditugu, sailkapen bururik gehitu gabe.

SSTD-ko entrenamenduaren garapena balidatzeko SSTD-ko garapen azpimul-
tzo estatiko bat definitu dugu, azpimultzo honen instantziak ausaz sortuz eta ber-
dinak erabiliz entrenamendu guztietan zehar. COCO-ko garapen azpimultzoko
irudiak erabili ditugu eta, irudi bakoitzeko instantzia bat sortu dugunez, gure ga-
rapen azpimultzoa 40.504 instantziez osatuta dago. SSTD-ko entrenamendu aro
bakoitzaren ondoren, garapenean ebaluatzen dugu eredua. Entrenamendua bukatu
ostean, garapenean emaitza onenak lortu dituen ereduarekin geratzen gara, VSR
atazan doitzeko erabiliko dena.

4.3 Esperimentuak

Atal honek gure esperimentuen ezarpenen xehetasunak ematen ditu. Ondoren,
ikasketa espaziala eta kokapen tokenak erabiltzeak dakartzan onurak aztertu di-
tugu eta hizkuntza-ereduen tamainekin jolastu dugu, artearen egoerarekin kon-
paraketak burutuz ere bai. Gainera, analisi sakon bat egiten da antzemandako
hobekuntzak nondik datozen ulertzeko.

4.3.1 Esperimentazio Ezarpenak
Esperimentuetan zehar VSR atazako random bertsioa erabili dugu, bere tamaina
handiagoa baita. Doikuntza prozesuan zehar, ereduak entrenamendu azpimultzoa
erabiliz ikasten du eta garapen azpimultzoan hoberen dabilen eredua aukeratzen
dugu ebaluazioa burutzeko. VSR-ko egileen gomendioak jarraituz, hiru entrena-
mendu ezberdinen batezbestekoak erakusten ditugu esperimentu guztietan, hauen
desbiderapen estandarrarekin batera.

Aukeratutako hiperparametroak 3. Kapituluan erabilitakoetan oinarritzen dira,
hau da, ez dugu hiperparametro bilaketa berririk burutu esperimentazio honetan.
Egin diren aldaketa bakarrak ereduak gure makinen espezifikazioetara egokitze-
ko beharrezkoak direnak izan dira. Ondoren, doitu dugun eredu bakoitzarekin
erabilitako hiperparametroak zerrendatzen ditugu.

BERT-base ereduko esperimentuetan 20K pauso zehaztu ditugu SSTD eta
VSR atazetako entrenamenduetarako, AdamW optimizatzailea erabiliz. 56ko sor-
ta tamaina eta 5 × 10−5eko ikasketa tasa maximoa erabili ditugu. Ikasketa tasa
aldakorra zehaztu dugu kosinu planifikatzailea erabiliz 2K pausoko beroketa li-
nealarekin. NVIDIA A30 GPU (24GB VRAM) bakarra erabili dugu esperimentu
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guztietarako, entrenamendu bakoitzak gehienez 5 ordu iraun duelarik.
BERT-large ereduaren kasuan entrenamendu pauso kopuru bera erabili dugu,

baina 32ko sorta tamaina eta 10−5 ikasketa tasa maximoa zehaztuz. Ez ditugu op-
timizatzaile edota beste hiperparametroetan aldaketa gehiagorik egin, BERT-base
ereduearen hiperparametroekin jarraituz. Hori bai, kasu honetan GPU handiago
bat erabili behar izan dugu, NVIDIA A100 GPU (80GB VRAM) bat hain zuzen
ere. Hala eta guztiz ere, eredu honekin entrenamendu bakoitza burutzeko gehie-
nez ere 5 ordu behar izan ditugu.

T5 ereduak 88K pausotan zehar entrenatzen ditugu espazialki, T5-3B kenduta,
20K pausoz entrenatu dugularik bere tamaina dela eta. Ikasketa espazialaren os-
tean, 20K pausoz doitzen ditugu VSR atazan. 32ko sorta tamaina eta 5× 10−5eko
ikasketa tasa maximoa zehaztu dugu hauen entrenamendurako. Optimizatzailea
eta ikasketa tasa planifikatzaileak BERT ereduekin erabilitakoak izan dira. T5
ereduen entrenamendu denborak eta entrenatzeko erabili diren GPU-ak honakoak
izan dira:

• T5-Base: NVIDIA A30 GPU bat erabili da, ikasketa espazialak ∼20 ordu
behar izan duelarik eta VSR-ko doitzeak, aldiz, ∼4 ordu.

• T5-Large: NVIDIA A100 GPU bat erabili da, ikasketa espazialak∼28 ordu
behar izan duelarik eta VSR-ko doitzeak, berriz, ∼10 ordu.

• T5-3B: NVIDIA A100 GPU bat erabili da, ikasketa espazialak ∼20 ordu
behar izan duelarik eta VSR-ko doitzeak, berriz, ∼15 ordu.

Azkenik, esperimentu guztietan zehar G = 32 sareta tamaina zehaztu dugu.

4.3.2 Ikasketa Espazialaren Eragina
4.3. Taulak VSR-ko ebaluazioan lortzen ditugun emaitzak erakusten ditu ikasketa
espaziala edota kokapen tokenak erabiltzearen arabera. Taulako lehenengo blo-
keak VSR-en doitutako BERT-base ereduaren errendimendua erakusten du. Ber-
tan kokapen tokenen erabilerak ezberdintasunik ez dakarrela ikus daiteke. Hala
ere, bigarren blokean antzemangarria da ezberdintasuna. Bloke hauetako ereduak
SSTD datu-multzoan doitu dira lehenago, non kokapen tokenak erabiltzen dituen
eredua den hobekuntzak lortzen dituen bakarra. Hobekuntza hau nabarmena da
beste ereduekiko, ∼12 puntu absolutuko aldea erakutsiz. Emaitza hauek kokapen
tokenak informazio espaziala kodetzeko eta hizkuntzaren oinarritzea burutzeko
egokiak direla erakusten dute. Kokapen token hauek ikasteko erdibideko entrena-
mendu bat beharrezkoa dela ikusi dugu, kasu honetan SSTD bidez burutu dena.
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Eredua Kokapen
Tokenak

Asmatze
Tasa

Hizkuntza-ereduak BERT-base
Ez 62,11±0,88

Bai 61,60±0,92

Hizkuntza-ereduak
Ikasketa Espazialarekin BERT-base

Ez 61,83±0,28

Bai 73,69±0,88

4.3 Taula – BERT-base eredua harturik, kokapen token edota ikasketa espa-
ziala erabiliz lortutako emaitzak VSR-ko ebaluazio azpimultzoan, batezbesteko
asmatze-tasa eta desbiderapen estandarra adieraziz.

Eredua Kokapen
Tokenak

Asmatze
Tasa

BERT-base
Ez 76,96
Bai 94,49

4.4 Taula – SSTD-ko garapen azpimultzoko asmatze-tasak kokapen tokenen era-
bileraren arabera.

Beste aldetik, 4.4. Taulak SSTD datu-multzoko garapenean lortutako emai-
tzak ikus ditzakegu. Emaitza hauek ez dira hain garrantzitsuak, baina emaitza ho-
rien gaineko azterketak datuen eta doitutako ereduen joerak interpretatzen lagun-
tzen du. Ataza honetan, ausaz erantzuten duen eredu batek 50 puntuko asmatze-
tasa lortuko luke, sailkapen bitarra burutu behar baitu. Interesgarria da kokapen
tokenik gabeko ereduak 76,96 puntu lortzea. Honek kokapen tokenik gabe datue-
tan dauden hainbat alborapen ikasi ditzakeela erakusten digu, baina ataza ondo
ebazten ikasteko nahikoa ez dela antzematen da ere bai. Kokapen tokenak gehi-
tzean∼17 puntu inguru gehiago lortzen ditu ereduak, 94,49ko asmatze-tasa lortuz
eta ataza ebazteko token hauen garrantzia erakutsiz.

4.3.3 Artearen Egoerarekin Konparaketa

Atal honetan gure emaitzak VSR-ko artearen egoerarekin konparatzen ditugu.
Gainera, hizkuntza-ereduen tamainarekin jolasten dugu lortu ditzakegun erren-
dimendu hobekuntzak aztertzeko. Horretarako, BERT-Large eredua eta T5 fami-
liako ereduak erabili ditugu.
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Eredua Parametroak Asmatze-tasa

Ikusizko
Hizkuntza-ereduak

CLIPprompting 632M 55,2±1,4

VisualBert † 110M 57,4±0,9

ViLT 87M 69,3±0, 9

LXMERT 240M 70,1±0, 9

Hizkuntza-ereduak
Ikasketa Espazialarekin

BERT-base 110M 73,69±0,88

BERT-large 336M 74,44±0,73

T5-base 220M 73, 09±0,59

T5-large 770M 74,49±0,36

T5-3B 3B 74,52±0,25

4.5 Taula – VSR-ko ebaluazio azpimultzoan lortutako emaitzak, batezbesteko
asmatze-tasa eta desbiderapen estandarra adieraziz. Lehenengo blokean artea-
ren egoera definitzen duten ikusizko hizkuntza-ereduak aurki daitezke, errefe-
rentziak testuan agertuz. Informazio espaziala erabiltzen ez dituzten ereduek †
bat dute. Bigarren blokean guk doitutako hizkuntza-ereduak aurkitzen dira.

4.5. Taulan artearen egoera definitzen duten VLM eta gure hizkuntza-eredue-
kin lortutako emaitzak daude. VLM ereduen emaitzak (Liu et al., 2023) lanetik
erauzi ditugu. VLM onenak, LXMERT-ek, 70,1eko asmatze-tasa lortzen du, eta
gure eredu guztiek nabarmenki gainditzen dute. Hala ere, guk informazio ga-
rrantzitsua galtzen dugu irudiaren deskribapena erabiltzean, objektuen izenak eta
hauen kaxa inguratzaileak bakarrik erabiltzen ditugu eta. Gure ereduen artean
onenak hiru hizkuntza-eredu handienak dira (letra lodiz daudenak 4.5. Taulan),
74 puntuko asmatze-tasa baino gehiago lortuz, LXMERT-ek baino 4 gehiago.

Emaitza hauetatik kokapen token eta ikasketa espaziala erabiltzeak estrategia
ona direla ondorioztatu dezakegu. Gainera, hizkuntza-ereduek informazio espa-
ziala maneiatzeko gaitasuna dutela erakutsi dugu, arrazoinamendu espazial tes-
tuala edota dokumentuen egiturari buruzko atazak lantzeko ate berriak irekitzen
dituena. Hala ere, hizkuntza-ereduen tamaina handitzeak dakartzan etekinak oso
txikiak direla ikusi dugu VSR atazarako. Egia da gure eredu onena 3B parame-
troko T5 eredua dela, baina T5-large edota BERT-large batekiko diferentzia oso
txikia da, hau da, estatistikoki ez dira esanguratsuak. Gainera, azkeneko bi ere-
du hauek 4 eta 10 aldiz txikiagoak dira T5-3B ereduarekiko, hurrenez hurren.
Hiperparametro bilaketarik burutu ez denez, baliteke hizkuntza-eredu handienen
hobekuntza nabarmena bihurtzea bilaketa sakonago bat egin ezkero.
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4.5 Irudia – Hiru BERT ereduren arteko konparaketa, asmatze-tasak erlazio es-
pazialka zehaztuz. Erlazioak (ardatz horizontalean) VSR-ko agerpen kopuruaren
arabera daude ordenatuta altuenetik baxuenera. Irakurketa errazteko, VSR-ko
ebaluazio azpimultzoan 15 aldiz baino gehiagotan azaltzen diren erlazioak ba-
karrik ipini ditugu. Hiru ereduek kokapen tokenak erabiltzen dituzte, eta “st”
akronimoak eredu horrek VSR-en doitu aurretik ikasketa espaziala jaso duela
adierazten du.

4.3.4 Analisia
Atal honetan erlazio espazial bakoitzarekin lortutako emaitzak banaka aztertzen
ditugu. Bide batez, gure sistema erregeletan oinarritutako algoritmo batekin kon-
paratzen dugu, baita VLM batekin ere. Azkenik, objektu atributuak erabiltzeak
dakartzan ondorioen analisi bat burutzen dugu.

Erlazio Espazial Bakoitzeko Emaitzak

VSR-ko 65 erlazioetan lortutako emaitzak banaka konparatu nahi izan ditugu,
ikasketa espaziala egin duten hizkuntza-ereduen errendimendua erlazioka azter-
tzeko. Helburua, beraz, ereduaren tamainak eta ikasketa honek nola eragiten du-
ten aztertzea da. 4.5. Irudiak hiru hizkuntza-eredu ezberdinen emaitzak erakusten
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ditu erlazioka. Aukeratu ditugun ereduak hauexek dira: BERT-base ikasketa espa-
zialik gabe, BERT-base berdina ikasketa espazialarekin eta BERT-large ikasketa
espazialarekin ere bai.

Orokorrean, ikasketa espazialak erlazio guztietan laguntzen du, salbuespen
batzuekin. Adibidez, orientazioa lantzen duen facing away edota albokotasuna
adierazten duen at the edge of. Esperotako emaitzak dira, izan ere, SSTDk ez
ditu erlazio horiek kontuan hartzen, orientazioa ezin baita kaxa inguratzaileetatik
inferitu, ezta albokotasuna ere, ez baitugu sakonera informaziorik. VLM hauen-
tzat orientazioa identifikatzea ataza zaila dela dirudi (Liu et al. 2023). Beraz, ildo
honetan ikertzea jarraitu beharreko bidea dela iruditzen zaigu.

Dena den, hizkuntza-ereduen orokortze ahalmenean efektu positiboak ikusi
ditugu. Kaxa inguratzaileek 3D informazioa kodetzen ez badute ere, ikasketa
espaziala egin ondoren hobekuntzak antzeman ditugu sakonera lantzen duten er-
lazioetan: behind eta in front of, besteak beste. Gure hipotesietako bat SSTD-k
tamainari buruzko erlazioak dituela da (wider, smaller...) eta, hortaz, ikasketa
espazialak sakonera inferitzeko eskura duen informazioa erabili dezake. Beste
hitz batzuetan, ohikoak diren tamainari buruzko erlazioak eta kaxa inguratzaileen
informazioa konbinatzen ikasi dezakete. Adibidez, pertsonak katuak baino han-
diagoak direnez, pertsonaren kaxa inguratzailea katuarena baino txikiagoa bada,
urrunago egon beharko luke irudian. Kasu hauek gehiago ikertzeko asmoa dugu,
erregela aritmetikoen bitartez bakarrik deskribatu ezin daitezkeen erlazioetan oro-
kortze ahalmena antzeman baitugu. Atariko analisi kualitatibo bat burutu dugu
eta B.2. Eranskinean aurki daiteke.

4.5. Irudian VSR eta SSTD datu-multzoetan agertzen diren erlazioak ikus
daitezke, non beraien errendimendua asko hobetzen den ikasketa espaziala buru-
tu ondoren. Bi entrenamenduen artean transferentzia bidezko ikasketa burutzea
espero genuen, semantikoki oso antzekoak baitira erlazio horiek. Hala ere, be-
neath erlazioaren kasuan, SSTD-n dagoen below erlazioarekin lotuta badago ere,
ikasketa espaziala duen BERT-base ereduak ez du ikasketa gabekoa gainditzen.
BERT-large ereduak, ordea, bai gainditzen duela, +12 puntu lortuz.

Analisira testuinguru gehiago gehitzeko, 4.6. Taulak VSR datu-multzoko er-
lazio kopuruak kategorietan erakusten ditu multzokatuta. SSTD-ko erlazioekin
berdina burutzen dugu eta kategoria bakoitzean SSTD-rekin ikasketa espaziala bu-
rutzeak dakartzan hobekuntzak ipintzen ditugu. VSR-ko 65 erlazioetatik SSTD-k
17 erlazio estaltzen ditu. Gainerako erlazioetako batzuk antzeko edo aurkako esa-
nahiak dituzte eta horietan entrenatzea lagungarria izan daiteke. Adibide gisa,
VSR-ko detached to erlazioa SSTD-ko overlapping erlazioari lotuta dago. Oro
har, overlapping erlazioa betetzen ez dituzten objektuen kaxa inguratzaileek de-
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VSR kategoria VSR Erlazioak SSTD Erlazioak ∆ Asmatze-tasa

Adjacency 10 2 +4,7
Directional 11 2 +2,9
Orientation 4 0 +9,1
Projective 12 8 +14,4
Proximity 5 0 +1,1

Topological 18 5 −1,2
Unallocated 5 0 +56,8

4.6 Taula – VSR-ko kategoria bakoitzeko erlazio kopuruak zehazten ditugu lehe-
nengo zutabean. Bigarrenean, SSTD-rekin berdina erakusten dugu. Azkeneko
zutabean, berriz, bi BERT-base ereduren arteko diferentzia erakusten dugu VSR-
ko ebaluazio azpimultzoan, ikasketa espaziala egiteak dakartzan hobekuntzak
zehaztuz.

tached to erlazioa beteko dute. Errendimendu aldaketaren zutabeari erreparatuz
(4.6. Taulako azkeneko zutabeari, hain zuzen), ikasketa espaziala kategoria guz-
tientzat onuragarria dela erakusten dugu, topological kategorian izan ezik, non
diferentzia oso txikia den. Unallocated kategoriak hobekuntza oso handia era-
kusten du, +56,8 puntu absolutukoa, baina ez da oso esanguratsua, 51 kasu ba-
karrik baitaude ebaluzio azpimultzoan. Orokorrean, SSTD-n ondo ordezkatuta
dauden kategoriak kontsistenteki hobetzen dira VSR atazan. Horiek dira projec-
tive (+14,4), adjacency (+4,7) eta directional (+2,9) kategorien kasuak. Zentzu
horretan, orientation kategoriaren hobekuntza harritzekoa da (+9,1).

Azkenik, hizkuntza-ereduen tamainari begira, BERT-base eta BERT-large ere-
duen arteko diferentziak ez dira kontsistenteak erlazioka. Ez dugu portaera nabar-
menik antzeman beraien artean.

Erregela bidezko sistemarekin konparaketa

Gure emaitzetatik ikasketa espaziala burutu duten hizkuntza-ereduen gaineko gal-
dera interesgarri bat sortzen da: eredu hauek zerbait ikasten al dute definitu ditu-
gun erregela espazialetatik haratago? Galdera hau erantzuteko erregeletan oinarri-
tutako algoritmo sinple bat zehaztu dugu, SSTD sortzeko erabili ditugun errege-
la espazial berdinak erabiliz. Algoritmo honen inplementazioari buruzkoak B.3.
Eranskinean daude eskura. Erregela hauek erabiliz VSR-ko ebaluazio azpimul-
tzoko %38a ebatzi daitezkeela ikusi dugu. Hala ere, goiburuko eta deskribapen

67



4 ARRAZOINAMENDU ESPAZIALA IKASTEN HIZKUNTZA-EREDUETAN

relation

ac
cu

ra
cy

0.00

0.25

0.50

0.75

1.00

un
de

r

on
 to

p 
of

at
 th

e 
rig

ht
 s

id
e 

of

at
 th

e 
le

ft 
si

de
 o

f

be
ne

at
h

ab
ov

e

co
nt

ai
ns

in
si

de

be
lo

w

le
ft 

of

rig
ht

 o
f

ov
er

su
rr

ou
nd

in
g

w
ith

in

in
to

ou
ts

id
e

ar
ou

nd

BERT-large st Rule-based

4.6 Irudia – VSR-ko ebaluazio azpimultzoan BERT-large eta erregeletan oina-
rritutako algoritmoaren arteko konparaketa erlazioka. Kaxa ingurutzaileen infor-
mazioa erabiliz ebatz daitezkeen erlazioak bakarrik hartu ditugu kontuan.

espazialen arteko objektuen lerrokatze desegokia dela eta, instantzia guztien %25
bakarrik ebatzi daitezke erregelak erabiliz. Instantzia hauetarako lortzen dugun
asmatze-tasa 60,7 puntukoa da, ikasketa espaziala duten hizkuntza-ereduen erren-
dimendutik urruti gelditzen delarik. Gainerako instantziak ausaz ebazten baditugu
(ebaluazio azpimultzoko %75 dena gutxi gorabehera), asmatze-tasa 52,4 puntura
jaisten da. Gure eredu hoberenak 74,5 puntu lortzen ditu, 22,1 puntuko hobekun-
tza erakutsiz erregeletan oinarritutako algoritmoarekiko.

4.6. Irudian erregela bidezko sistema eta gure BERT-large ereduen arteko kon-
paraketa aurki daiteke, emaitzak erlazioka azalduz. Ikus daitekeenez, erregelak
erabiliz ebatz daitezkeen erlazioetan ikasketa espaziala egin duen BERT-large ere-
dua da garaile, hiru erlaziotan izan ezik. within eta around kasuetan emaitza ber-
dinak lortzen ditugu, eta into erlazioan, berriz, erregeletan oinarritutako algorit-
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4.7 Irudia – Ikasketa espaziala egin duen BERT-large eta LXMERT ereduen
arteko konparaketa VSR-ko ebaluazio kategorietan banatuta.

moak lortzen ditu emaitza hoberenak.4 Emaitza hauetatik gure hizkuntza-ereduek
erregela espazialetan kodetuta dagoen informazioa baino gehiago ikas dezaketela
ondorioztatu dezakegu.

VLM batekin Konparaketa

Kapitulu honen ardatz nagusia ez bada ere, interesgarria da ikasketa espaziala
duen hizkuntza-eredu bat VLM batekin konparatzea. Analisi horretarako BERT-
large eta LXMERT ereduak erlazioka ebaluatzen ditugu VSR-ko ebaluazio azpi-
multzoan.

4.7. Irudian bi ereduekin lortutako asmatze-tasak agertzen dira, kategorie-
tan banatuta. Antzeman daitekeenez, ez daude ezberdintasun handirik bi ereduen
artean, unallocated kategorian kenduta, non BERT-large ereduak LXMERT-eri
nabarmenki irabazten dion (92 vs. 68). Dena den, erlazioka egiten badugu konpa-
raketa, ondorio interesgarriagoetara iritsi gaitezke. 4.8. Irudian hori egiten dugu,
4 puntu absolutu baino handiagoko diferentzia duten erlazioak bistaratuz bakarrik.

4Kontuan izan VSR-ko ebaluazio azpimultzoan 6 instantzia bakarrik daudela into erlazioare-
kin, emaitzak esanguratsuak ez izanik.
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4.8 Irudia – Ikasketa espaziala egin duen BERT-large eta LXMERT ereduen
arteko konparaketa VSReko erlazioetan banatuta. Bi ereduen arteko diferentzia
4 puntu absolutukoa baino handiagoak diren erlazioak azaltzen dira bakarrik.

4 puntuko diferentzia nabarmena dela diogu VSR-ko ebaluazio azpimultzoan bi
ereduen arteko batezbesteko diferentzia 4 puntukoa delako.

Ikus daitekeenez, BERT-large ereduak LXMERT gainditzen du in front of, at
the left side of, in, far away from, inside, left of, far from, close to, at the back
of eta over erlazioetan. Alde batetik, zentzua du BERT-large bi dimentsioko in-
formazioa bakarrik behar duten erlazioak hobeto ebaztea (at the left side of, left
of eta over). Kontua da BERT-large ereduak informazio gehiago behar dituzten
beste erlazio batzuetan hobeto dabilela ere bai (in front of, in, far away from,
inside, far from, close to eta at the back of ). Erlazio hauetarako gainerako iku-
sizko informazioa erabilgarria izan beharko luke, baina badirudi LXMERT-ek ez
dakiela informazio hori ondo maneiatzen. Beste aldetik, LXMERT-ek bi erlazioe-
tan bakarrik gainditzen du nabarmenki BERT-large (on top of eta in the middle
of ). On top of erlazioaren kasuan ez dugu hau gertatzeko arrazoi garbirik ikusten.
In the middle of kasuan, ordea, BERT-large ereduaren errendimendua oso txarra
da, BERT-base ereduarena baino askoz okerragoa. Erlazio honetan BERT-base
eta LXMERT-ek pareko emaitzak lortzen dituzte. Beraz, joera hau erlazio honen
instantzia kopuru urriarekin lotuta dagoela uste dugu (15 bakarrik baitaude).
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4.4 ONDORIOAK

Objektu Atributuen Erabilera

VinVL-ek, hau da, erabili dugun objektu detektoreak, objektuen izena eta kaxa
inguratzaileaz kanpo, hauen atributuak itzultzen ditu. Atributu hauek koloreak,
egoerak (open hand, standing boy), tamainak, texturak (striped jacket), materialak
(brick wall), dira besteak beste. Ikasketa espazialean aldaketak egin ditugu atribu-
tu zerrendak deskribapen espazialari gehitzeko eta, ondoren, BERT-base bat en-
trenatu dugu 4.3.1. Ataleko hiperparametroak erabiliz. Ondoren, SSTD-ko gara-
penean emaitza onenak dituen eredua VSR-en doitzen dugu, berriz ere atributuak
gehituz deskribapenetara. Horrela, VSR-ko ebaluazioan lortzen dugun asmatze-
tasa 74,1 puntukoa da, 4.3. Taulan erakusten dugun BERT-base ereduaren desbi-
derapen estandarraren barruan dagoena. Hortaz, ataza honetarako VinVL bidez
erauzitako atributuak erabiltzea ez dela onuragarria ondorioztatzen dugu. Hori
bai, kontuan hartzekoa da orientazioa edota sakonera bezalako atributuak VSR
atazarako baliagarriak izan daitezkeela, aurreko azpiatalean aipatu den bezala.

4.4 Ondorioak
Kapitulu honetan erlazio espazialak hizkuntza-ereduetan oinarritzeko modu be-
rri bat aurkeztu dugu, kokapen tokenen bidez ahalbidetzen dena. Kokapen token
eta erlazio espazialen arteko oinarritzea ikasi ahal izateko, SSTD datu-multzoa
proposatzen dugu. Testuzko datu-multzo hau anbiguetaterik gabeko erlazio espa-
zialak lantzen ditu, irudi errealetatik erauzitako objektuen arteko erlazioak hain
zuzen ere. Visual Spatial Reasoning datu-multzoko bertsio berbalizatu bat era-
biltzen dugu esperimentuak burutzeko, hizkuntza-ereduen oinarritze eraginkorra
burutzen dugula erakutsiz. Gainera, VLM-kin konparatzean emaitza hobeak lor-
tzen ditugula erakusten dugu, gure hurbilpenak funtzionatzen duela adieraziz.

Gainera, hizkuntza-ereduen tamaina handitzean artearen egoera berria definitu
dugu VSR atazan. Hala ere, hobekuntza oso txikiak antzeman ditugu hizkuntza-
ereduen tamaina handitu dugun heinean. Honek erlazio espazialen oinarritzean
tamaina ez dela garrantzitsua adieraz dezake, beste ikerketa lerroei atea irekiz.

Etorkizunean ikasketa espaziala sakondu nahi dugu, orientazioa eta sakonera
bezalako kategoria berriak gehituz, adibidez. Arrazoinamendu espaziala lantzen
duten testuzko atazak landu nahi ditugu ere bai, SpartQA (Mirzaee et al., 2021) eta
RESQ (Mirzaee and Kordjamshidi, 2022), adibidez. Bertan, lengoaia naturaleko
irudien deskribapenak eraldatu nahi ditugu kokapen tokenak txertatzeko eta hauen
onurak ataza horietan aztertzeko.
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5. KAPITULUA

Erlazio Espazialek Baldintzatutako Irudien Sorrera

5.1 Motibazioa eta Ekarpenak

Stable Diffusion (Rombach et al. 2022) eta Dall-E 3 (Betker et al. 2023) bezalako
testu bidezko irudi sortzaileak arreta handia jaso dute azken aldian, beraien erren-
dimendua asko hobetu baita. Hala ere, sistema hauek perfektuak izatetik urruti
daude, hainbat ahulezia erakutsiz. Adibidez, artearen egoeran erlazio espazial es-
plizituak ondo adierazten ez dituztela antzeman da (Gokhale et al. 2023; Cho et al.
2023b). Gabezi hau oztopo handia bihurtzen da testu bidezko irudi edizioan edota
beste aplikazio batzuetan (Kawar et al. 2023).

Esan bezala, erlazio espazial esplizituak irudikatzeko artearen egoerak erren-
dimendu eskasa erakusten du. Gure ustetan, honen zergatia irudi sortzaileen en-
trenamenduan erabiltzen diren goiburukoek erlazio espazial gutxiegi dituztela da.
Hipotesiari eusteko analisi bat burutu dugu ingelesezko LAION-2B datu multzoa-
ren gainean (Schuhmann et al. 2022), Stable Diffusion familiako eredu irekiak
entrenatzeko erabili baita. LAION-2B datu multzoko goiburukoak sarean esku-
ragarri dauden irudien alt-text eremutik erauzi dira. Goiburuko horien guztien
gainean erlazio esplizituak automatikoki bilatu ditugu (left, below etab.) eta goi-
burukoen %0,72etan bakarrik aurkitu ditugu. Gainera, goiburuko hauen %64,1ek
left eta right erlazioak dituzte, gaur egungo irudi sortzaileek ikasi ezin dituztenak.
Izan ere, entrenamendu irudiei ausazko iraulketa horizontala aplikatzen zaie irudi
kopurua artifizialki handitzeko, baina goiburukoei ez zaie pareko transformaziorik
aplikatzen, bien arteko lerrokatze espaziala galduz.
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5 ERLAZIO ESPAZIALEK BALDINTZATUTAKO IRUDIEN SORRERA

Erlazio espazialak dituzten goiburukoen faltagatik motibatuta, entrenamendu
datuak sortzen zentratu gara irudi sortzaileen artearen egoera hobetzeko. Kontuan
izan behar dugu hurbilpen hau irudi sortzaileen arkitekturan aldaketak burutzea-
ren osagarria dela (Cho et al. 2023b; Feng et al. 2023). Zehazki, erlazio espa-
zial esplizituak dituzten goiburuko sintetikoak automatikoki sortzen ditugu, irudi
errealekin parekatuz. 4. Kapituluan datu sintetikoak sortzeko landutako hurbilpe-
na jarraituz, COCO datu multzoko (Lin et al. 2014) objektu anotazioak erabiltzen
ditugu bi kaxa inguratzaileren arteko erlazio espazialak inferitzeko. Horietatik,
goiburuko sintetikoak sortzen ditugu, irudi errealekin lerrokatuta daudenak, eta
pare horiekin datu multzo bat osatzen dugu, Spatial Relations for Generation edo
SR4G deritzoguna.

SR4G datu multzoa Stable Diffusion (SD) familiako bi eredu doitzeko erabili
dugu, erlazio espazial esplizituak dituzten irudi eta goiburuko pareekin ikasteak
ereduen gaitasunak hobetuko dituela aurreikusiz. Doitutako ereduak ebaluatzeko
eta jatorrizko SD ereduekin konparatzeko proposatu berri den VISOR metrika
erabili dugu (Gokhale et al. 2023), erlazio espazial gehiagotara hedatzen duguna.

Lan honen ekarpenak ondorengoak izan dira:

1. SR4G datu multzoa sortu dugu, testu bidezko irudi sortzaileak arrazoina-
mendu espazialean doitzeko, garatzeko eta ebaluatzeko lehen baliabidea,
14 erlazio esplizituekin osatuta dagoena.

2. Gure esperimentuek erakutsi dute, SR4G-ko datuekin doitzeak erlazio es-
pazialen ulermena hobetzen duela.

3. Hobekuntza hau entrenamenduan zehar ikusi ez dituen objektuetan antze-
man da baita ere, doitutako ereduak erlazio hauek ikasteko gaitasuna eta
objektu berrietan erlazioak orokortzeko ahalmena dutela erakutsiz.

4. Gure emaitzak artearen egoera gainditzen dute irudi sortzaileen ulermen es-
pazialaren alorrean (Cho et al. 2023b; Feng et al. 2023) tamaina txikiagoko
ereduekin eta arkitektura konplexu edota hizkuntza-eredu handien erabilera
ekiditen (5.1. Irudia).

Gure kodea, ereduak eta datu multzoak edozeinen eskura utzi ditugu.1

1URL: https://github.com/salanueva/SR4G
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5.2 METODOLOGIA

5.1 Irudia – Stable Diffusion ereduak (v1.4 eta v2.1) gure SR4G datu multzoan
doitzeak dakarren errendimenduaren hobekuntza nabarmena da. Artearen egoera
gainditzen du ezagutza espaziala jorratzen duten irudi sortzaileetan, lerro hori-
zontalekin adierazten direnak (ikus 5.3.3. Atala xehetasun gehiago jakiteko).

5.2 Metodologia

Atal honetan, SR4G datu multzoa nola sortu dugun zehaztu dugu, goiburuko sin-
tetikoen sorrera zehaztuz. Gainera, SD ereduak nola doitu ditugun zehaztu dugu,
baita ereduen ebaluazio automatikoa nola gauzatu dugun ere.

5.2.1 SR4G: Erlazio Espazial Esplizituen Sorkuntzarako Datu-
multzo Sintetikoa

Irudi eta goiburuko pareez osatutako datu multzoen gabeziak ikusita, goiburuko
sintetiko eta irudi erreal pareak sortzea proposatzen dugu, pare hauek SR4G da-
tu multzoa sortzeko erabiliz (Spatial Relations for Generation). Aurreko lanetan
erabilitako erlazio espazial kopurua handitu dugu (Gokhale et al. 2023; Cho et al.
2023b; Feng et al. 2023), proiektiboak (projective) eta tamaina (scale) erlazioe-
tatik at, erlazio topologikoak (topological) gehituz baita ere. Erabilitako erlazio
espazial ez anbiguoen zerrenda ondorengoa da:
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5 ERLAZIO ESPAZIALEK BALDINTZATUTAKO IRUDIEN SORRERA

• Proiektiboak: left of, right of, above eta below.

• Topologikoak: overlapping, separated, surrounding eta inside.

• Tamaina erlazioak: taller, shorter, wider, narrower, larger eta smaller.

Gure helburua entrenamendu, garapen eta ebaluaziorako datu multzo bat sor-
tzea da. Entrenamendurako irudi eta goiburuko pareak behar ditugu, baina ere-
duen errendimendua ebaluatzeko, berriz, goiburukoekin soilik nahikoa dugu. Izan
ere, aurreko lanetan egindakoa jarraituz (Gokhale et al. 2023; Cho et al. 2023b),
irudi sortzailearen irteerak ez dira irudi errealekin konparatzen ebaluazio garaian.
Ebaluazioaren inguruko xehetasunak 5.2.2. Atalean deskribatzen dira.

Ebaluaziorako goiburukoak

Goiburuko sorkuntza burutzeko, ⟨subject, relation, object⟩ hirukote espazialen ze-
rrenda bat definitzen dugu. Hirukote espazial batek erlazio espazial bat (relation)
zehazten du, goiburuko batean azalduko den izena (subject) eta objektuaren (ob-
ject) arteko ezaugarri espazial bat zehaztuz. Gure hasierako hirukote espazialen
zerrenda osatzeko COCO (Lin et al. 2014) datu multzoan definituta dauden 80
objektuen pare guztiak eraikitzen ditugu (objektu errepikatuak dituztenak kendu-
ta), 3.160 objektu pare eraikiz. Pare guztiak 14 erlazio espazialekin konbinatuz,
88.480 hirukote espazialekin gelditzen gara.

Hauetako hirukote espazial batzuk ez dira arruntak. Adibidez, oso zaila da
⟨skis, above, toothbrush⟩ edo ⟨truck, inside, cat⟩ hirukoteak irudi errealetan aur-
kitzea, ez direlako ez ohikoak ezta zentzudunak ere. Arruntak ez diren hirukoteak
kendu nahi ditugu sortzen ari garen datu multzotik. Hortaz, COCO-ko entrena-
menduan erabilitako irudietan gutxienez behin agertzen diren hirukoteak identi-
fikatu ditugu. Gutxienez agerpen bat duten hirukote hauek erabili ditugu amaie-
rako zerrenda osatzeko, hirukote guztien %68,8 erabiliz ebaluazioko goiburukoak
zehazteko (60.836 hirukote guztira).

Hirukoteak goiburuko bihurtzeko eskuz definitutako txantiloiak erabili ditugu.
Txantiloi hauek ahalik eta sinpleenak izaten saiatu gara (ikus C.1.1. Eranskina).
Goiburuko hauek bi objekturen arteko erlazio espaziala zehazten dute soilik, beste
xehetasunik gehitzea ekiditen dugularik, ebaluazioa erlazio espazialetan bakarrik
zentratu nahi dugu eta.
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Ikasketarako irudi eta goiburuko pareak

Ikasketarako irudi errealekin lotuta dauden erlazio espazialak dituzten goiburu-
koak behar ditugu. COCO 2017 bertsioko entramendu azpimultzoa erabili dugu
irudi errealak eta hauen objektu anotazioak lortzeko. Horietatik goiburuko sin-
tetikoak lortzeko metodologia bat definitzen dugu bi pausotan zatitzen dena: i)
objektu anotazioetatik hirukote espazialak sortzen ditugu eta ii) hirukote haueta-
tik goiburukoak eraikitzen ditugu.

I irudi bat eta irudi horri dagokion n objektuz osatutako OI = {o1, o2, . . . , on}
zerrenda izanik, gure helburua OI zerrendan dauden bi objektuz eta hauen arteko
balizko erlazio espazial batez osatutako hirukote espazial bat sortzea da ⟨os, r, oo⟩,
non s, o ∈ {1, . . . , n}. Objektu bakoitza bere li klasea eta bbi = {x0

i , y
0
i , x

1
i , y

1
i }

kaxa inguratzailearekin daukagu etiketatuta, hau da, objektu bakoitzaren izena eta
bere posizioa/tamaina irudian ezagutzen ditugu.

TI = {t1, . . . , tm} zerrenda I irudian agertzen diren balizko hirukoteez osa-
tuta dago, non m irudi horretan azaltzen den hirukote kopurua den. Beraz, tj =
⟨ls, r, lo⟩ hirukotea SR4G datu multzoko zerrendan dago definituta eta I irudian
betetzen da, non j ∈ {1, . . . ,m}. Horrek r erlazioa fr erregela heuristiko baten
bidez definitu daitekeela esan nahi du. Kasu honetan, heuristiko honek bi objek-
tuen kaxa inguratzaileak (bbsetabbo) hartuko ditu kontutan eta bi objektuen artean
erlazioa betetzen den ala ez itzuliko du fr funtzioak (ikus 5.1. Ekuazioa). fr
funtzioak Johnson et al. (2018) lana jarraituz definitu ditugu, bi objektuen ka-
xa inguratzaileen arteko erlazio espazial ez anbiguoak zehaztuz. Begiratu C.1.2.
Eranskina funtzio hauen definizioak eta adibideak ikusteko.

tj = ⟨ls, r, lo⟩ ∈ TI ←→ fr(bbs, bbo) (5.1)

Erabili ditugun COCO datu multzoko I eta OI pare kopurua artifizialki handi-
tzeko hainbat estrategia jarraitu ditugu (ausazko mozketak eta iraulketa horizonta-
lak eginik). Ondoren, etiketa ezberdinak dituzten bi objektu aukeratzen ditugu au-
saz: os eta oo. Horrela, bi objektuen arteko balizko erlazio espazialak zeintzuk di-
ren begiratzen dugu fr funtzioak erabiliz eta ausaz aukeratzen dugu horietako bat,
j-garren balizko erlazioa eraikiz TI zerrenda osoa kalkulatu gabe: tj = ⟨ls, r, lo⟩.
Azkenik, tj hirukotea berbalizatzen dugu ebaluazioko goiburukoetan erabilitako
txantiloi berak erabiliz. Txantiloi hauek C.1.1. Eranksinean aurki daitezke.
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Bertsioa Irudiak
Goiburuko ezberdinak

I/G Pareak
Entrenamendua Garapena Ebaluazioa

Main 103,4K 60,8K 2,5K 60,8K 9,9M
Unseen 83,6K 46,9K 2,5K 8,0K 4,8M

5.1 Taula – SR4G bertsioen estatistikak. Irudiak zutabean entrenamenduan
zehar erabilitako irudi kopurua zehazten da. Goiburuko ezberdinak zutabean,
berriz, azpimultzo bakoitzean ager daitezkeen goiburuko ezberdinak definitzen
dira. Azkenik, I/G pareak sor ditzakegun irudi/goiburuko pareak zehazten ditu.

SR4G-ren Bertsioak

SR4G datu multzoko bi bertsio eraiki ditugu, main eta unseen bertsioak hain zuzen
ere. Main bertsioan entrenamenduko goiburukoak exekuzio unean sortzen ditu-
gu murrizketarik gabe. Honek hirukote bera entrenamendu (train), garapen (val)
edota ebaluazioan (test) zehar ager daitekeela esan nahi du. Unseen bertsioan,
berriz, COCO datu multzoko 80 objektuak hiru azpimultzotan banatu ditugu ho-
nako banaketarekin: |Otrain| = 45, |Oval| = 5 and |Otest| = 30. Xehetasunetan
sartuz, entrenamenduan zehar goiburukoak dinamikoki sortzen ditugunean Otrain

azpimultzoko objektuak bakarrik hartzen ditugu kontuan. Garapenerako, Oval ob-
jektuekin konbinazio gutxi eraiki ditzakegunez, gutxienez Oval objektuetako bat
duten hirukote guztiak hartzen ditugu kontutan, Otest multzoko objekturik ez di-
tuzten bitartean. Ebaluaziorako goiburukoak sortzeko Otest azpimultzoan azaltzen
diren objektuak bakarrik erabiltzen ditugu. 5.1. Taulan aipatutako bertsioen irudi
eta goiburuko kopuruak zehazten ditugu (xehetasun gehiago C.1.3. Eranskinean).

5.2.2 Ebaluazioa
Erlazio espazialetan testu bidezko irudi sortzaileen errendimendua ebaluatzeko
hiru ebaluazio metrika erabili ditugu, Gokhale et al. (2023) lanean aurkeztuak.

Object Accuracy: la eta lb objektu etiketak eta I ′ sortutako irudi bat emanik,
object accuracy metrikak etiketa horiei dagozkien bi objektuak irudian agertzen
diren ala ez neurtzen du. Objektu detektore bat erabiliz, I ′ irudian agertzen diren
objektuen zerrenda eskuratzen dugu LI′ = {l1, . . . , ln}, 5.2. Ekuazioa erabiliz
asmatze-tasa hau definitzeko. Ebaluazio metrika hau objektuak sortzeko gaitasuna
neurtzeko erabilgarria da, ez baitu hirukotearen r erlazioa kontuan hartzen.
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OA(I, la, lb) =

{
1 if la, lb ∈ LI′

0 else
(5.2)

VISOR: I ′ sortutako irudia eta t = ⟨la, r, lb⟩ hirukote espaziala emanda, VI-
SOR metrikak bi objektuak sortu direla eta bien arteko erlazio espaziala zuzena
dela neurtzen du (ikus 5.3. Ekuazioa). fr funtzioak bi objektuen kaxa inguratzai-
leak hartzen ditu kontutan (bba and bbb) eta hirukotea balizkoa den aztertzen du.
5.2. Ekuazioan bezala, kaxa inguratzaile hauek objektu detektore baten bitartez
lortzen dira. Beraz, VISOR metrikan balio altuagoak lortzen dira goiburukoetan
azaltzen diren objektuen sorrera kontsistenteago batekin eta haien arteko kokapen
erlatibo zuzenagoekin, goiburukoan aipatzen diren hirukote espazialak irudikatze-
ko ahalmena erakutsiz.

VISOR(I, t) =




1 if la, lb ∈ LI′ ∧

fr(bba, bbb)

0 else
(5.3)

VISORCond: Zuzen irudikatu diren hirukote espazialen proportzioa adierazten
du metrika honek ere, baina bi objektuak agertzen diren irudiak bakarrik hartzen
ditu kontuan. Gure ekarpenak arrazoinamendu espazialean zentratzen direnez,
VISORCond ebaluazio metrika aztertuko dugu gehienbat, honek kuantifikatzen bai-
tu erlazio espazialen irudikapen zuzena objektuen sorrera alde batera utziz. Sis-
tema ezberdinek objektuak sortzeko ahalmen ezberdinak izan ditzaketenez, gure
esperimentuetarako informazio baliagarriena VISORCond metrikak ematen digu,
erlazio espazialen ulermena isolatzen baitu.

Kapitulu honetan zehar hiru metriken balioak ematen ditugu eta, gainera, era-
bilitako erlazio espazialen kopurua 4tik 14ra handitu dugu.

5.2.3 Ikasketa Algoritmoa
Kapitulu honetan erabilitako ereduei ez diegu aldaketarik egin arkitektura edota
galera funtzio aldetik. Azken finean, gure helburua erlazio espazialak dituzten
goiburukoekin difusio ereduak doitzea da eta eredu hauen arrazoinamendu espa-
zialean dakartzaten onurak aztertu nahi ditugu. Gure esperimentuen oinarritzat SD
eredua hartu dugu, erlazio espazialen sorkuntzan errendimendu altuena ematen
baitu bitarteko pausorik eman gabe (Gokhale et al. 2023). Hala ere, SD ereduak
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ez dira erlazio espazialak irudikatzen kontsistenteenak. Artearen egoera Pipeline
ereduek zehazten dute, eta hauekin konparaketa 5.3.3. Atalean egin dugu.2

SD ereduen bi bertsio erabili ditugu lan honetan zehar: SD v1.4 eta SD v2.1,
irudiak 512x512 eta 768x768ko pixel kopuruarekin sortzen dituztenak, hurrenez
hurren. Esan bezala, eredu hauek SR4G datu multzoan doitzeko Rombach et al.
(2022) lanean erabili zuten LCLDM galera funtzioa erabili dugu, hots, testu bidez-
ko irudi sorkuntza burutzeko erabili zutena.

LCLDM := EE(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, τθ(y))∥22

]
(5.4)

5.4. Ekuazioan zehazten da LCLDM funtzioa (loss for conditional latent diffu-
sion models). 2. Kapituluko 2.2. Ekuazioaren antzekoa da, baina hainbat aldaketa
ditu. Alde batetik, SD ereduek espazio latentean egiten dute lan, x irudiaren erre-
presentazio bektorial baten gainean aplikatuz bai difusioa eta baita zarata-ezabatze
prozesua ere, E(x)-ren gainean alegia. Difusio prozesua t aldiz aplikatuz, zt bek-
toreak duen ϵ zarata zein den aurresaten saiatzen da SD eredua. Beste aldetik,
berreskuratu nahi den x irudia y goiburukoaz baldintzatzeko τθ eredua erabiltzen
dugu, SD ereduen kasuan CLIP ereduaren testu kodetzailea izanik (Radford et al.
2021). Hortaz, SD ereduak aurresandako zarata ϵθ(zt, t, τθ(y)) da eta, 5.4. Ekua-
zioari esker, ϵ zarata errealarekin duen diferentzia minimizatzen ikasten da.

Entrenamenduan zehar garapen azpimultzoan ebaluatzen ditugu ereduak zehaz-
tutako entrenamendu pauso kopuru bat pasatzen den bakoitzeko. Entrenamendua
bukatu ostean, garapen azpimultzoan VISORCond balio altuena lortu duen eredua-
ren bertsioarekin geratzen gara. Gokhale et al. (2023) jarraituz, lau irudi sortzen
ditugu hirukote espazial bakoitzeko emaitza tenteagoak lortzeko.

5.3 Esperimentuak

Atal honetan, difusio ereduek erlazio espazialak irudikatzeko duten ahalmena
handitzen dugu eredu hauek SR4G datu multzo sintetikoan doituz. Gainera, ere-
du doituak ikasi duena ikusi ez dituen objektuetara orokortzeko ahalmena duela
erakusten dugu. Artearen egoera osatzen duten pipeline sistemekin konparaketa
burutzen dugu baita ere, eta hainbat analisi burutzen ditugu emaitza nagusietan
lortutako ondorioak sendotzeko.

2Laburbilduz, pipeline ereduek lehenengo objektu-kokapenak sortzen dituzte, ondoren irudi
sorkuntza objektu-kokapen horietan baldintzatuz. Sistema hauek hizkuntza-eredu handien men-
pekoak dira, pipeline ereduen konplexutasuna handiagoa izanik.

80



5.3 ESPERIMENTUAK

Hyperparameter Value

Training steps 100k
Batch size 64
Learning Rate 10−5

Optimizer AdamW
Adam β1 0,9
Adam β2 0,999
Adam ϵ 10−8

Weight decay 0,01
Mixed-precision bf16

5.2 Taula – Difusio ereduen doikuntzan erabilitako hiperparametroak.

5.3.1 Esperimentazio Ezarpenak
Entrenamendurako ezarpenak: 5.2. Taulan entrenamenduan zehar erabilita-
ko hiperparametroak definitu ditugu. Erabilitako ikasketa-tasa eta optimizatzailea
SD ereduen aurrentrenamenduan erabilitako berberak dira, eta gainerako hiperpa-
rametroak eskura daukagun azpiegituraren arabera egokitu ditugu. Gainera, batez-
besteko mugikor esponentziala (ingelesez exponential moving average) (Kingma
and Ba 2015) erabiltzen dugu parametroak eguneratzeko AdamW optimizatzai-
learekin (Loshchilov and Hutter 2019) eta ikasketa-tasa planifikatzailerik gabe.
Ebaluazioak 5K entrenamendu pauso bakoitzeko burutzen ditugu entrenamendu
pauso guztiak egin arte.

Datu gehikuntza estrategiak gehitu ditugu gure entrenamenduan zehar, hala
nola, iraulketa horizontalak eta ausazko mozketak. C.3. Eranskinean xehetasun
gehiago aurki daitezke.

Memoria behar ezberdinak direla eta, 2 eta 4 NVIDIA A100 GPU erabili ditu-
gu SD v1.4 eta SD v2.1 ereduak doitzeko, hurrenez hurren. Bi kasuetan 64ko sorta
tamaina efektiboa erabili dugu. Doikuntza bakoitza burutzeko 3-4 egun behar izan
ditugu.

Ebaluazio ezarpenak: Erabili ditugun ebaluazio metrikak objektu detektore bat
erabiltzen dute goiburukoetan azaltzen diren objektuak irudian kokatzeko. Gokha-
le et al. (2023) jarraituz, hiztegi irekiko OWL-ViT objektu detektorea erabili dugu
(Minderer et al. 2022), CLIP eta ViT-B/32 ereduetan oinarritzen dena (Radford
et al. 2021; Zhai et al. 2022a). 0,1-eko konfiantza atalasea zehaztu dugu gure es-
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Eredua VISORCond ↑ VISOR ↑ OA ↑
Main split

SD v1.4 60,9 17,6 29,0
SD v2.1 64,0 27,4 42,8
SDSR4G v1.4 69,0 26,8 38,9
SDSR4G v2.1 69,5 31,7 45,6

Unseen split

SD v1.4 60,1 17,3 28,7
SD v2.1 64,0 28,4 44,4
SDSR4G v1.4 68,9 23,7 34,4
SDSR4G v2.1 69,4 29,4 42,4

5.3 Taula – Main eta unseen bertsioetan lortutako emaitzak. SD v1.4 eta v2.1
ereduak dagozkien SDSR4G eredu doituekin konparatzen ditugu.

perimentuetan zehar, irudiaren eskualde konkretu batean objektu bat dagoen ala
ez zehazteko erabiltzen delarik. Gainera, hiztegi irekiko objektu detektorearen sa-
rreran detektatu nahi dugun objektua zehazteko ondoko txantiloia erabiltzen dugu
Minderer et al. (2022) lanean emandako gomendioak jarraituz: "a photo of a
⟨OBJ⟩.".

SD ereduek sortutako irudien aldakortasuna dela eta, ebaluazio goiburuko ba-
koitzeko 4 irudi sortzen ditugu. Hortaz, 10K irudi sortzen ditugu garapeneko
azpimultzoan ebaluatzerako garaian, guk egindako hainbat probetan emaitza kon-
tsistenteak lortu ditugu eta irudi kopuru honekin. Goiburuko bakoitzeko 4 irudi
sortzeko joera jarraituz, ebaluazio azpimultzoan 243,3K eta 32,1K irudi sortzen
ditugu main eta unseen bertsioetan, hurrenez hurren.

5.3.2 Ikasketa Espazialaren Eragina
5.3. Taulan SD eta SDSR4G ereduekin lortutako emaitzak erakusten ditugu, metri-
ka bakoitzeko emaitza onenak beltzaranez markatuz. Doitutako ereduei SDSR4G

deritzogu.
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Main bertsioa: SDSR4G ereduek ebaluazio metrika guztietan lortzen dituzte ho-
bekuntzak SD ereduekiko, objektu eta erlazio espazialen sorkuntza ahalmenak in-
dartuz. Emaitza hauek gure hasierako hipotesiarekin bat datoz, erlazio espazial
esplizituak dituzten irudi-goiburuko pareekin doitzea lagungarria dela erakutsiz
hauen sorkuntzarentzat. Gure esperimentuetan SDSR4G v1.4 eta v2.1 ereduek pa-
reko errendimendua erakusten dute, baina v2.1-ek objektu sorkuntza hobeto men-
deratzen du. Aipatzekoa da ere v1.4 ereduen arteko diferentzia handiagoa dela
v2.1-ko eredueekin lortutakoa baino.

Unseen bertsioa: SDSR4G-ren hobekuntzak nondik datozen aztertzeko, unseen
bertsioan doitzen eta ebaluatzen ditugu eredu hauek baita ere. Izan ere, main ber-
tsioko entrenamenduan objektu pare bakoitzeko alborapen edo joera espazialak
ikasi ditzakete, entrenamenduko objektu eta erlazioen arteko korrelazioak ikasiz
orokortze gaitasunik gabe. Unseen bertsioak entrenamendu eta ebaluaziorako ob-
jektu ezberdinak erabiltzen dituenez, orokortze ahalmena isolatu dezakegu gure
azterketan. 5.3. Taulan eredu doituek datu multzoko bi bertsioetan VISORCond eta
VISOR metriketan kontsistenteki hobekuntzak lortzen dituztela antzeman daite-
ke. VISORCond metrikaren kasua bereziki interesgarria da, main bertsioan bezain
altua baita, baina kasu honetan objektu sorkuntzak ez du baldintzatzen lortutako
puntuazioa. Honek doikuntza ondoren gure ereduek ikusi ez dituen objektuetara
orokortzeko ahalmena duela erakusten du. Azkenik, esan beharra dago probatu
ditugun bi SD ereduek pareko joera erakusten dutela gure datu multzoko bi ber-
tsioetan.

Irudien kalitatea: Entrenamenduan goiburuko sintetikoak erabiltzen ari gare-
nez, doikuntzan zehar sortutako irudien kalitatea okertzen ez dela aztertzen du-
gu. Beraz, Fréchet Inception Distance (FID) (Heusel et al. 2017) metrika erabili
dugu giza goiburukoetatik sortutako irudien kalitatea neurtzeko. Ebaluazio hau
burutzeko COCO datu multzoko 2017 bertsioko garapenean dauden 5.000 irudi-
goiburuko pare erabili ditugu. Gure esperimentu guztietan zehar FID balioak
konstante mantentzen direla antzeman dugu. Sortutako irudien hainbat adibide
5.3.4. Atalean aztertu daitezke.
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5.3.3 Artearen Egoerarekin Konparaketa

Artearen egoerako bi pipeline sistemekin konparatu ditugu gure ereduak: La-
youtGPT (Feng et al. 2023) eta VPGen (Cho et al. 2023b). VPGen ereduak
erabiltzen duen hizkuntza-eredu handia objektu-kokapenak sortzeko doituta da-
go,3 beraz eredu hau dagoen bezala erabiltzen dugu. Kontuan izan behar dugu
hizkuntza-eredu hau COCO datu multzoan doituta dagoela. Hortaz, VPGen-ek
gure ebaluazioko irudi eta objektu-kokapen pareak ikusi ditu, kontaminazio ara-
zoak izanik unseen bertsioko esperimentuetan.

LayoutGPT-ek 7B parametroko Llama-2 eredua erabiltzen du eta testuingu-
ru bidezko ikasketa bidez objektu-kokapenak sortzeko egokitzen da, eredua doitu
beharrean. Hortaz, instantzia multzo bat osatzen dugu hizkuntza-ereduaren tes-
tuingurua osatzeko. 400 goiburuko eta objektu-kokapen pare biltzen ditugu ausaz
erlazio espazial bakoitzeko, 5,6K paretako datu multzoa eraikiz. Inferentziak egi-
teko k = 8 adibide aukeratzen ditugu, bildutako goiburukoen eta sarrerako goi-
burukoaren arteko CLIP bidezko antzekotasuna kalkulatuz (Radford et al. 2021)
eta top-k adibide antzekoenak aukeratzen ditugu hizkuntza-ereduaren testuingu-
rua osatzeko eta goiburuko objektuen objektu-kokapenak sortzeko.

5.4. Taulan bi SR4G bertsioetan lortutako emaitzak aurki ditzakegu. Bertan
joera berdina ikus dezakegu, hots, SDSR4G v2.1 ereduak pipeline sistemek osa-
tzen duten artearen egoera gainditzen du VISORCond metrikan, erlazio espazialen
sorrera ebaluatzen duena goiburukoan aipatutako bi objektuak irudian agertzen
diren kasuetan. Hobekuntza hau bereziki garrantzitsua da, aztertu ditugun bi pi-
peline sistemak parametro kopuru aldetik 6 eta 11 aldiz handiagoak baitira. Gai-
nera, hizkuntza-eredu handiez baliatutako arkitektura konplexuagoak dituzte gure
difusio ereduekin konparatuta.

Bestalde, 5.2.2. Azpiatalean azaldu diren beste bi ebaluazio metriken balioak
ikus ditzakegu 5.4. Taulan. Ebaluatutako ereduetatik VPGen-ek lortzen ditu emai-
tza hoberenak VISOR eta object accuracy metriketan. Espero genituen emaitzak
dira hauek. Izan ere, VPGen-ek objektu sorrera sustatzen du bere entrenamen-
duan zehar eta VISOR balioak ereduaren objektu sorreraren ahalmenarekin ko-
rrelatua baitaude. Gainera, VISOR-en hobekuntzak objektu sorrera ahalmenaga-
tik bakarrik hobetu direla ikus dezakegu, VPGen-en emaitzak okertu egiten baitira
VISORCond metrikan. Gogoratu VISORCond metrikak objektuak sortzeko ahalme-
na ez duela kontuan hartzen.

3Hiru datu multzo ezberdin erabiltzen dituzte entrenamendurako goiburuko eta objektu-
kokapen pareak lortzeko: Flickr30K entities (Plummer et al. 2015), COCO instances (Lin et al.
2014), eta PaintSkills (Cho et al. 2023a).
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Eredua Param. VISORCond ↑ VISOR ↑ OA ↑
Main split

LayoutGPT 8,1B 64,7 24,7 38, 1
VPGen 14,1B 67,7 34,5 51,0
SD v2.1 1,3B 64,0 27,4 42,8
SDSR4G v2.1 1,3B 69,5 31,7 45,6

Unseen split

LayoutGPT 8,1B 64,7 24,7 38,1
VPGen † 14,1B 68,4 37,0 54,1
SD v2.1 1,3B 64,0 28,4 44,4
SDSR4G v2.1 1,3B 69,4 29,4 42,4

5.4 Taula – Artearen egoerarekin konparaketa bi SR4G bertsioetan, ereduen pa-
rametro kopuruak zehaztuz. †VPGen kontaminatuta dago unseen bertsioan, eba-
luazioan erabili diren hirukote espazialak ikusi baititu objektu-kokapenen sor-
kuntza ikasterakoan.

5.3.4 Analisia

Difusio ereduak SR4G-en doitzeak dakartzan ondorioen azterketa sakon bat egin
dugu. Bertan, ereduen errendimendua aztertzen dugu erlazioka, baita hauen al-
borapena aurkako esanahia duten erlazioetan ere. Gainera, SR4G-ko hirukote
espazialen maiztasuna eta ereduek hauetan dituzten errendimenduen arteko korre-
lazioa aztertu dugu. Azkenik, sortutako irudien analisi kualitatiboa burutu dugu.

Ereduen errendimendua erlazioka

5.5. Taulan VISORCond balioak erlazioka banatzen ditugu. Azterketa hau SDSR4G

v2.1 ereduaren gainean egin dugu datu multzoko bi bertsioetan.
Lehenik eta behin, erlazio proiektibo guztietan hobekuntzak antzeman ditu-

gu. Hobekuntza hau handiagoa da left of eta right of erlazioetan. Izan ere, SD
ereduen entrenamenduan zehar burutzen diren irudien iraulketa horizontalak dire-
la eta, ezin dituzte ardatz horizontalari dagozkien erlazio espazialak ikasi. Gure
doikuntzan irudi eta goiburukoak beti ondo lerrokatuta daudenez, ereduek erla-
zio horiek ikasteko ahalmena erakusten dute, above eta below erlazioen pareko
errendimendua lortuz doikuntza burutu ondoren.
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Mota Erlazioa Main Bertsioa Unseen Bertsioa

Pr
oi

ek
tib

oa Left of 70,3 (+7,0) 69,8 (+8,8)
Right of 72,4 (+8,0) 67,9 (+3,9)
Above 72,0 (+4,5) 70,4 (+2,2)
Below 71,4 (+4,5) 70,3 (+2,8)

To
po

lo
gi

ko
a Overlapping 86,9 (-4,9) 84,0 (-5,2)

Separated 79,5 (+17,0) 84,8 (+18,5)
Surrounding 29,8 (+2,3) 21,7 (-2,1)
Inside 43,4 (-7,4) 39,2 (-6,4)

Ta
m

ai
na

Taller 71,2 (+1,6) 75,6 (+5,0)
Shorter 67,5 (+8,5) 69,0 (+11,9)
Wider 71,6 (+4,3) 73,0 (+6,9)
Narrower 69,3 (+9,3) 67,1 (+5,0)
Larger 71,5 (+0,5) 74,7 (+1,9)
Smaller 65,2 (+12,7) 63,3 (+13,5)

5.5 Taula – SDSR4G v2.1 ereduaren VISORCond balioak erlazioka. SD v2.1 eta
SDSR4G v2.1 ereduen arteko diferentzia parentesi artean ematen da.

Erlazio topologikoek aldakortasun handiagoa erakusten dute. Separated er-
lazioaren kasua berezia da, bi objekturen gainezartzea behartzen ez duen erlazio
topologiko bakarra baita. Erabilitako erlazio topologikoetatik doikuntza ondoren
okertzen ez den erlazio bakarra da, 18,5 puntuko hobekuntza lortuz VISORCond

metrikan. Overlapping-en kasua aurkakoa da, doikuntza ez baita onuragarria. SD
v2.1 ereduak jada badaki erlazio hau zuzen sortzen, 91,8 eta 89,2 puntu lortuz bi
bertsioetan. Beste bi erlazio topologikoak bereziki zailak dirudite. Erlazio hauen
VISORCond balioak oso txikiak dira SD ereduetan, eta gure doikuntza espazialak
emaitzak okertzen ditu, batez ere inside-n kasuan. Hau gure entrenamenduaren
ahulezia bat da, eta entrenamendu estrategia ezberdinak planteatu beharko lirate-
ke arazo honi ekiteko.

Azkenik, SDSR4G ereduak hobekuntzak lortzen ditu tamaina erlazio guztietan.
Taller, wider eta larger erlazioak sortzeko errendimendua altuagoa da hauen aur-
kako erlazioena baino, doikuntzan lortutako hobekuntzak txikiagoak badira ere.
Honek SD ereduek erlazio espazialak sortzeko alborapen handiak dituztela irado-
kitzen du.
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5.2 Irudia – Ardatz horizontalak bi erlazio espazialen arteko VISORCond balioen
diferentziak zehazten ditu, ardatz bertikalean aurkako esanahia duten erlazio pa-
reak zehaztuz. Emaitzak unseen bertsioan doitu diren SD v2.1 and SDSR4G v2.1
ereduenak dira.

Aurkako erlazioen alborapena

Gure erlazio gehienek aurkako esanahia duen erlazio bat dute. Adibidez, right
of erlazioaren aurkakoa left of izango litzateke. Guztira, sei pare aurki daitezke
gure erlazio multzoan, 5.2. Irudian zerrendatzen direnak. Bertan, haien arteko
errendimendu diferentzia zehazten da doikuntza aurretik eta ondoren. Unseen
bertsioan lortutako emaitzak erakusten ditugu.

Aurkako esanahiak dituzten erlazioen arteko alborapenak eta baita doikuntza
burutu ondoren hauek murriztu diren ere aztertu nahi ditugu. 5.2. Irudian SD v2.1
ereduaren alborapen sendoak antzematen ditugu. C.2. Eranskinean alborapen
hauek SD ereduen aurrentrenamenduan erabilitako datuetan erlazioek duten ager-
pen proportzioarekin korrelatua daudela erakusten dugu. Gainera, SDSR4G v2.1
ereduak erlazio pare guztien alborapenak txikitzen dituela ikus dezakegu, wider
eta narrower parearen kasua kenduta. Honek gure doikuntzak ereduaren berezko
alborapenak gutxitzen dituela erakusten du.
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(a) Main bertsioko emaitzak. (b) Unseen bertsioko emaitzak.

5.3 Irudia – Ardatz horizontal logaritmikoan SR4G-ko hirukoteen agerpenen
maiztasuna zehazten dugu COCO-ko entrenamendu irudietan, eta ardatz ber-
tikalean, berriz, hirukote horiekin lortutako VISORCond balioak. SD v2.1 eta
SDSR4G v2.1 ereduen emaitzak ezberdintzen ditugu, eta hirukoteak maiztasuna-
ren arabera multzokatzen ditugu ikusgarritasunagoa izateko.

Errendimendua hirukote espazialen maiztasunen arabera

SR4G irudi naturaletan oinarritutako goiburukoekin osatu dugu eta, hortaz, hi-
rukote espazial batzuk besteak baino maizago azaltzen dira. Horregatik, entre-
namenduan zehar ikusitako erlazioen maiztasunak gure emaitzetan zenbateraino
eragiten duen aztertu nahi izan dugu. 5.3. Irudian COCO datu multzoko entrena-
mendu instantzietako hirukote espazialen maiztasunak hauen VISORCond balioe-
kiko konparatzen ditugu, bai SD v2.1 eta baita SDSR4G v2.1 eredurako ere.

Alde batetik, 5.3a. Irudiak main bertsioan lortutako emaitzak erakusten di-
tu. Kasu honetan, irudi sortzaileak hirukote berdinak ikusi ditu entrenamenduan
eta ebaluazioan. Espero den bezala, maiztasun handiko hirukoteen gaineko hobe-
kuntza handiagoa da eredua doitu ostean. Gainera, SD ereduek ez dituzte COCO
irudiak ikusi beraien aurrentrenamenduan zehar, baina SR4G datuekin doitu ez
diren SD ereduek korrelazio hau erakusten dute ere bai.

Beste aldetik, 5.3b. Irudiak pareko korrelazioak erakusten ditu bi ereduetan
unseen bertsioko esperimentuen emaitzekin. Hala ere, kasu honetan entrenamen-
duan zehar ikusi ez diren objektuekin egin dugu ebaluazioa. Emaitza hauek ika-
sitako erlazioak hirukote arruntagoetara transferitzea errazagoa dela adierazten
dute, hirukoteetako objektuak doikuntzan zehar ikusi ez badira ere.
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4) A person overlapping a sheep.

7) A laptop shorter than a dining table.

1) A bowl right of a sandwich

5) A dog and a chair separated. 6) A motorcycle smaller than a bus.

3) A cup smaller than a hot dog.

8) A teddy bear right of a book.

SD SDSR4G SD SDSR4G

SD SDSR4G SD SDSR4G SD SDSR4G

SD SDSR4G

SD SDSR4G SD SDSR4G

2) A traffic light taller than a bicycle.

9) A refrigerator and a book separated.

SD SDSR4G

5.4 Irudia – SD v2.1 eta SDSR4G v2.1 ereduekin sortutako irudien hainbat iru-
di, main bertsioan doituak. Gure erregela heuristikoak jarraituz, goiburukoan
azaltzen den erlazioa zuzen agertzen bada irudian marka berde batekin zehazten
dugu. Bestela, ixa gorri bat ipintzen dugu irudiaren goi-eskuinaldeko eskual-
dean.

Analisi Kualitatiboa

Sortutako irudiak kualitatiboki ebaluatzeko, oinarrizko SD v2.1 eredua eta gure
main bertsioan doitutako SDSR4G v2.1 eredua aukeratu ditugu. Ebaluazioa buru-
tzeko hirukote espazial ohikoenak eta arraroenak baztertu ditugu. Azken finean,
hirukote ohikoenak ondo sortzeko oso errazak dira, ⟨truck, larger, dog⟩ kasua
bezala, bi objektuak ondo sortzearekin erlazioa betetzea oso erraza baita (irudi
gehienetan kamioiak handiagoak baitira txakurrak baino). Hirukote arraroenek,
berriz, ez daukate logika handirik eta ez dirudite naturalak, ⟨bus, shorter, traffic
light⟩ hirukotearen kasua, adibidez. Horregatik, COCO-ko instantzietan 100 eta
1,000 agerpen arteko hirukoteak bakarrik hartu ditugu kontuan.4

Analisia egiteko, beraz, irudiak sortzen ditugu ausaz aukeratutako goiburu-
koak erabiliz, eredu bakoitzeko irudi bat sortuz. Goiburukoan aipatzen diren bi

4Maiztasun hauek 5.3. Irudian erakutsitako analisitik erauzi dugu.
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objektuak ondo sortzen dituzten lehenengo bederatzi irudi pareekin gelditu gara.
Bederatzi irudi pare horiek 5.4. Irudian azaltzen dira. Bertan, irudi bakoitzeko
hirukote espaziala ondo sortzen den ala ez zehazten dugu.

5.4. Irudian azaltzen diren hainbat hirukote espazialen sorkuntza erraza da:
2, 3, 6, 7 eta 9 zenbakiarekin identifikatzen direnak, alegia. Izan ere, goiburu-
koan azaltzen diren objektuak sortzean arruntena dagokien erlazioa betetzea da.
SDSR4G ereduak denak ondo sortzen ditu 3-ren kasua izan ezik, kasu horretan
katilua edo mug objektua ez baitago guztiz ikusgarri sortutako irudian (erabaki
hau eztabaidagarria izan daiteke). SD ereduak, berriz, bigarren irudia sortzen du
gaizki, semaforoa (traffic light) ez baitago ondo sortua.

1, 4, 5 eta 8 goiburukoak sortzea, aldiz, zailagoa da. SDSR4G ereduak lau
erlazioak zuzen sortzen ditu (right of bi aldiz, overlapping eta separated), baina
SDek hirutan oker egiten du. Gaizki sortutako erlazioak interesgarriak dira. 1 eta
8 irudietarako, erlazio espazialak ez dira ohikoenak sarean aurki daitezkeen irudi
naturaletan, SD-ek hauek sortzeko arazoak izanik. Hala ere, 5 irudiko txakurra eta
aulkia separatuta aurkitzea ohikoa da irudietan, baina SD-ek ez du goiburukoan
azaltzen den erlazioa jarraitzen. Honek SD ereduak separated erlazioa ezagutzen
ez duela iradokitzen du, 5.5. Taulako emaitzak kontrastatuz.

5.4 Ondorioak
Lan honetan erlazio espazial esplizituak dituzten goiburuko eta irudi pareak sor-
tzeko prozesu bat definitu dugu. Prozesu hau erabiliz, SR4G datu multzo sinte-
tikoa sortu dugu, artearen egoerako irudi sortzaileak erlazio hauetan doitzea eta
ebaluatzea ahalbidetzen duelarik. Difusio eredu aurrentrenatuen gainean doikun-
tza burutzeak hobekuntzak dakartzala erakutsi dugu, egungo artearen egoera gain-
dituz erlazio espazialen sorkuntzan. Doitutako ereduek entrenamenduan ikusi ez
diren objektuetara orokortzeko gaitasunak erakusten dituzte. Gainera, analisi sa-
konagoetan tamaina erlazioen eta erlazio proiektiboen sorkuntzan hobekuntza na-
barmenagoak lortzen direla antzeman da, difusio ereduen hasierako alborapenak
txikituz eta hobeto orokortuz irudi errealetan ohikoagoak diren erlazioetara.

Etorkizunean sakonera kontuan hartzen duten erlazioak landu nahi ditugu, in
front of eta behind besteak beste. Gainera, erlazio espazialak dituzten goiburuko
naturalak jasotzeko metodo berriak aztertu nahi ditugu, artearen egoera giza goi-
burukoekin ebaluatzeko. Azkenik, interesgarria iruditzen zaigu difusio ereduetan
objektuen kokapena kodetzen den eragiketen gaineko azterketa egitea eta galera
funtzio berriak definitzea horiek zuzendu eta hobetzeko.
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6. CHAPTER

Conclusions and Future Research

In this thesis, we have explored alternative approaches for tackling two limi-
tations of current vision-and-language models (VLMs): world knowledge in-
tegration and spatial reasoning. On the one hand, by verbalizing images, we
have learned to leverage better the implicit knowledge found in LMs for visual
question-answering (VQA) tasks. On the other hand, we have shown the relevance
of training image-caption pairs with explicit spatial relations for better spatial rea-
soning in current VLMs, both for text and image generation. More in-depth, the
main contributions of this thesis are the following:

• We have developed a VQA system that first generates captions from images,
and then works only with textual data. We show that such a system performs
surprisingly well in knowledge-intensive tasks like OK-VQA, where ques-
tions cannot be answered with images alone, requiring access to external
knowledge. Our analysis has concluded that the loss of information is com-
pensated by the better inference ability of text-only pre-trained LMs when
summarizing the image into a short description. We have also shown the
importance of an LM’s capacity when leveraging its implicit knowledge,
outperforming contemporary state-of-the-art VLMs by a large margin and
matching a 15-times larger ensemble model. The higher capacity of con-
temporary LMs appears to be an advantage for knowledge-intensive tasks
compared to VLMs. Finally, we have noticed that both modalities are com-
plementary, which we have analyzed by fusing visual and textual signals.
This first contribution is aligned to research line RL1.
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• We have presented a novel way to ground spatial relations in text-only lan-
guage models through location tokens. To make LMs learn the grounding
between spatial relations and location tokens, we have also proposed the
Synthetic Spatial Training Dataset (SSTD), a textual dataset with unam-
biguous spatial relations between objects automatically derived from exist-
ing images. We have run experiments on a verbalized version of the Visual
Spatial Reasoning dataset, where spatial grounding can be tested, showing
that our approach to ground spatial relations in LMs is effective, general-
izing even to spatial relations not present in SSTD. Our approach obtains
better results than contemporary VLMs and, by scaling up our LMs, we
get the new state-of-the-art in the VSR dataset. Nevertheless, we observe
diminishing returns with the capacity increase, which may suggest that to
ground better those spatial relations, the scale of LMs is not determinant.
This contribution is associated with research line RL2, specifically with
RL2.1.

• We have defined a dataset generation pipeline to build synthetic captions
containing explicit spatial relations from COCO images and their object an-
notations. This way, we have created the Spatial Relations for Generation
dataset (SR4G), containing millions of image-caption pairs for training and
thousands of captions for evaluation. Fine-tuning Stable Diffusion models
with these image-caption pairs (SDSR4G) outperforms the original diffusion
model, as well as surpassing state-of-the-art pipeline models that rely on
layout generation. Further experiments have shown that SDSR4G general-
izes to unseen objects during fine-tuning. We observe that SDSR4G learns to
depict projective and scale relations better, reduces the bias that the original
model has for opposite relations like above and below, and generalizes bet-
ter to spatial triplets that are more frequent in real images. This contribution
is related to research line RL2, specifically with RL2.2.

In terms of publications, parts of this dissertation have been published in
peer-reviewed journals. Notably, two papers were published in Journal Citation
Reports (JCR) Q1 ranked journals, and the third one is currently under review.

Apart from them, during my PhD and outside this dissertation, I authored 5
other peer-reviewed papers presented at international conferences (1 ECAI and 2
IkerGazte) or workshops (1 SemEval and 1 SIGUL), as well as a book chapter.
The 2 papers presented at IkerGazte were written in Basque, and one of them
received the most relevant research for the development of the Basque Country
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award. Finally, another paper is currently under review at an international top
conference (NeurIPS 2024).

Future Research: In the course of this thesis, the main paradigm used in NLP
tasks has shifted from using task-specific systems toward developing general-
purpose large VLMs and LLMs. This has been enabled thanks to the recent
advances in computational power and available data quantity. The latest mod-
els have higher capacity and, therefore, show better zero-shot and few-shot ca-
pabilities, which enables in-context learning approaches and better generalization
capabilities.

Regarding the two limitations that have been tackled in this dissertation, world
knowledge integration has been researched far more than spatial reasoning. On the
one hand, retrieval augmented generation (RAG) has recently emerged as a key
component of LLMs to avoid hallucinations and complement the LLM’s strong
implicit knowledge with relevant knowledge. Even though this approach already
existed before the start of this thesis, it did not kick off until the advent of LLMs
(Gao et al. 2023), and, nowadays, new works regarding RAG are published or
made publicly available every week. On the other hand, spatial reasoning is a
more niche domain for researchers and current state-of-the-art LLMs/VLMs still
suffer from barely reasoning with spatial relations. Nevertheless, there are still
new research lines that we would like to explore on both sides:

• Use of richer and question-specific descriptions for knowledge-intensive
VQA tasks. As we have seen, verbalizing the input helps the model to better
benefit from its implicit knowledge, but this process prunes most informa-
tion from the image. Selecting the relevant information for each question
is key to retrieving the implicit knowledge we need to answer the question.
Wu et al. (2019) explores this idea, but this approach should be tested again
with current state-of-the-art systems. Moreover, integrating new verbaliza-
tion methods by generating scene graphs or longer captions would also help
in this task.

• Multimodal Retrieval Augmented Generation. Even though this disser-
tation focuses on leveraging implicit knowledge, RAG approaches rely on
retrieving explicit knowledge found mainly in textual documents. How-
ever, RAG has evolved beyond its original focus on text-based question-
answering, now enabling it to encompass several modalities. This growth
has led to the creation of groundbreaking multimodal models that apply

93



6 CONCLUSIONS AND FUTURE RESEARCH

RAG principles across multiple fields (Yasunaga et al. 2023). As some
knowledge is not well represented in text corpora (such as common-sense
knowledge), exploring approaches that can retrieve this knowledge directly
from domain-specific knowledge graphs is an open research line.

• Usage of location tokens in text-only spatial reasoning tasks. Many tasks
that LMs solve require spatial reasoning, even though they are not grounded
in the real world and the meaning of spatial relations is beyond what they
can learn. Therefore, we aim to transition to text-only spatial reasoning
tasks like SpartQA (Mirzaee et al., 2021) and RESQ (Mirzaee and Kord-
jamshidi, 2022), where we plan to transform the natural language scene de-
scriptions with explicit spatial relations of those tasks to our textual scene
descriptions based on location tokens.

• Creation of an evaluation dataset containing natural captions with spa-
tial relations. There is a lack of proper evaluation datasets for spatial rea-
soning in image generation. That is why the creation of a dataset where each
instance is composed of a natural image-caption pair with annotated spa-
tial relations mentioned in the caption would enable more robust automatic
evaluations. Currently, existing evaluation datasets are either synthetic or
too small to draw statistically relevant conclusions.

• Development of spatially relevant training objectives for text-to-image
generation. Intermediate layout generation for text-to-image generation
has defined the state-of-the-art regarding spatial reasoning. Nevertheless,
layout generation requires expensive inferences with LLMs. Hertz et al.
(2022) observe that diffusion models encode layout information in its cross-
attention layers. Therefore, we seek to remove the intermediate layout gen-
eration step and keep their performance by defining training objectives that
force the model to depict objects in proper positions. Following our work,
we could use object annotations as ground truth labels in cross-attention
layers to signal proper layouts without explicitly encoding object locations
in the input itself.
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neural network based language model. Interspeech 2010, 2010.

Minderer M., Gritsenko A., Stone A., Neumann M., Weissenborn D., Dosovitskiy
A., Mahendran A., Arnab A., Dehghani M., Shen Z., et al.. Simple open-
vocabulary object detection. European Conference on Computer Vision, 728–
755. Springer, 2022.

103

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html


BIBLIOGRAPHY

Mirzaee R., Faghihi H.R., Ning Q., and Kordjamshidi P. Spartqa: A textual ques-
tion answering benchmark for spatial reasoning. Proceedings of the 2021 Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 4582–4598, 2021.

Mirzaee R. and Kordjamshidi P. Transfer learning with synthetic corpora for spa-
tial role labeling and reasoning. Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing, 6148–6165, Abu Dhabi, United
Arab Emirates, December 2022. Association for Computational Linguistics.
URL https://aclanthology.org/2022.emnlp-main.413.

Nichol A.Q., Dhariwal P., Ramesh A., Shyam P., Mishkin P., Mcgrew B.,
Sutskever I., and Chen M. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models. International Conference on
Machine Learning, 16784–16804. PMLR, 2022.

Oord A.v.d., Li Y., and Vinyals O. Representation learning with contrastive pre-
dictive coding. arXiv preprint arXiv:1807.03748, 2018.

Ordonez V., Kulkarni G., and Berg T. Im2text: Describing images us-
ing 1 million captioned photographs. In Shawe-Taylor J., Zemel R.,
Bartlett P., Pereira F., and Weinberger K., editors, Advances in Neu-
ral Information Processing Systems, 24 lib. Curran Associates, Inc.,
2011. URL https://proceedings.neurips.cc/paper/2011/
file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

Parikh A., Wang X., Gehrmann S., Faruqui M., Dhingra B., Yang D., and Das
D. ToTTo: A controlled table-to-text generation dataset. In Webber B.,
Cohn T., He Y., and Liu Y., editors, Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 1173–1186,
Online, November 2020. Association for Computational Linguistics. URL
https://aclanthology.org/2020.emnlp-main.89.

Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., Killeen
T., Lin Z., Gimelshein N., Antiga L., Desmaison A., Kopf A., Yang
E., DeVito Z., Raison M., Tejani A., Chilamkurthy S., Steiner B., Fang
L., Bai J., and Chintala S. Pytorch: An imperative style, high-
performance deep learning library. In Wallach H., Larochelle H., Beygelz-
imer A., d'Alché-Buc F., Fox E., and Garnett R., editors, Advances in
Neural Information Processing Systems, 32 lib. Curran Associates, Inc.,

104

https://aclanthology.org/2022.emnlp-main.413
https://proceedings.neurips.cc/paper/2011/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://aclanthology.org/2020.emnlp-main.89


BIBLIOGRAPHY

2019. URL https://proceedings.neurips.cc/paper/2019/
hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Patel R. and Pavlick E. Mapping language models to grounded conceptual spaces.
International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=gJcEM8sxHK.

Peters M.E., Neumann M., Iyyer M., Gardner M., Clark C., Lee K., and Zettle-
moyer L. Deep contextualized word representations. In Walker M., Ji
H., and Stent A., editors, Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Papers), 2227–2237, New Or-
leans, Louisiana, June 2018. Association for Computational Linguistics. URL
https://aclanthology.org/N18-1202.

Petroni F., Rocktäschel T., Riedel S., Lewis P., Bakhtin A., Wu Y., and Miller A.
Language models as knowledge bases? Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2463–
2473, 2019.

Plummer B.A., Wang L., Cervantes C.M., Caicedo J.C., Hockenmaier J., and
Lazebnik S. Flickr30k entities: Collecting region-to-phrase correspondences
for richer image-to-sentence models. Proceedings of the IEEE international
conference on computer vision, 2641–2649, 2015.

Radford A., Kim J.W., Hallacy C., Ramesh A., Goh G., Agarwal S., Sastry G.,
Askell A., Mishkin P., Clark J., et al.. Learning transferable visual models from
natural language supervision. International conference on machine learning,
8748–8763. PMLR, 2021.

Raffel C., Shazeer N., Roberts A., Lee K., Narang S., Matena M., Zhou Y., Li W.,
and Liu P.J. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Rajbhandari S., Rasley J., Ruwase O., and He Y. Zero: Memory optimizations
toward training trillion parameter models. SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis, 1–16. IEEE,
2020.

105

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://openreview.net/forum?id=gJcEM8sxHK
https://openreview.net/forum?id=gJcEM8sxHK
https://aclanthology.org/N18-1202
http://jmlr.org/papers/v21/20-074.html


BIBLIOGRAPHY

Ramesh A., Dhariwal P., Nichol A., Chu C., and Chen M. Hierarchi-
cal text-conditional image generation with clip latents. arXiv preprint
arXiv:2204.06125, 2022.

Ramesh A., Pavlov M., Goh G., Gray S., Voss C., Radford A., Chen M., and
Sutskever I. Zero-shot text-to-image generation. In Meila M. and Zhang T., ed-
itors, Proceedings of the 38th International Conference on Machine Learning,
139 lib. of Proceedings of Machine Learning Research, 8821–8831. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
ramesh21a.html.

Ren S., He K., Girshick R.B., and Sun J. Faster R-CNN: towards real-time ob-
ject detection with region proposal networks. In Cortes C., Lawrence N.D.,
Lee D.D., Sugiyama M., and Garnett R., editors, Advances in Neural Informa-
tion Processing Systems 28: Annual Conference on Neural Information Pro-
cessing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, 91–
99, 2015. URL https://proceedings.neurips.cc/paper/2015/
hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html.

Rombach R., Blattmann A., Lorenz D., Esser P., and Ommer B. High-resolution
image synthesis with latent diffusion models. Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 10684–10695, 2022.

Ronneberger O., Fischer P., and Brox T. U-net: Convolutional networks for
biomedical image segmentation. Medical image computing and computer-
assisted intervention–MICCAI 2015: 18th international conference, Munich,
Germany, October 5-9, 2015, proceedings, part III 18, 234–241. Springer,
2015.

Salimans T., Goodfellow I., Zaremba W., Cheung V., Radford A., and Chen X.
Improved techniques for training gans. Advances in neural information pro-
cessing systems, 29, 2016.

Schuhmann C., Beaumont R., Vencu R., Gordon C., Wightman R., Cherti M.,
Coombes T., Katta A., Mullis C., Wortsman M., et al.. Laion-5b: An open
large-scale dataset for training next generation image-text models. Advances in
Neural Information Processing Systems, 35:25278–25294, 2022.

Schwenk D., Khandelwal A., Clark C., Marino K., and Mottaghi R. A-okvqa: A
benchmark for visual question answering using world knowledge. European
conference on computer vision, 146–162. Springer, 2022.

106

https://proceedings.mlr.press/v139/ramesh21a.html
https://proceedings.mlr.press/v139/ramesh21a.html
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html


BIBLIOGRAPHY

Shah S., Mishra A., Yadati N., and Talukdar P.P. Kvqa: Knowledge-aware visual
question answering. Proceedings of the AAAI conference on artificial intelli-
gence, 33 lib., 8876–8884, 2019.

Shannon C.E. Prediction and entropy of printed english. Bell system technical
journal, 30(1):50–64, 1951.

Shao Z., Yu Z., Wang M., and Yu J. Prompting large language models with an-
swer heuristics for knowledge-based visual question answering. Proceedings of
the IEEE/CVF Conference on computer vision and pattern recognition, 14974–
14983, 2023.

Sharma P., Ding N., Goodman S., and Soricut R. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. Proceed-
ings of the 56th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), 2556–2565, 2018.

Shevchenko V., Teney D., Dick A., and van den Hengel A. Reasoning over vi-
sion and language: Exploring the benefits of supplemental knowledge. Pro-
ceedings of the Third Workshop on Beyond Vision and LANguage: inTEgrating
Real-world kNowledge (LANTERN), 1–18, Kyiv, Ukraine, April 2021. Associa-
tion for Computational Linguistics. URL https://aclanthology.org/
2021.lantern-1.1.

Simonyan K. and Zisserman A. Very deep convolutional networks for large-scale
image recognition. 3rd International Conference on Learning Representations
(ICLR 2015). Computational and Biological Learning Society, 2015.

Singh A., Hu R., Goswami V., Couairon G., Galuba W., Rohrbach M., and Kiela
D. Flava: A foundational language and vision alignment model. Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
15638–15650, 2022.

Speer R., Chin J., and Havasi C. Conceptnet 5.5: An open multilingual graph of
general knowledge. Proceedings of the AAAI Conference on Artificial Intelli-
gence, 31 lib., 4444–4451, 2017.

Su W., Zhu X., Cao Y., Li B., Lu L., Wei F., and Dai J. Vl-bert: Pre-training of
generic visual-linguistic representations. International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=
SygXPaEYvH.

107

https://aclanthology.org/2021.lantern-1.1
https://aclanthology.org/2021.lantern-1.1
https://openreview.net/forum?id=SygXPaEYvH
https://openreview.net/forum?id=SygXPaEYvH


BIBLIOGRAPHY

Sutskever I., Vinyals O., and Le Q.V. Sequence to sequence learning with neural
networks. Advances in neural information processing systems, 27, 2014.

Szegedy C., Ioffe S., Vanhoucke V., and Alemi A. Inception-v4, inception-resnet
and the impact of residual connections on learning. Proceedings of the AAAI
conference on artificial intelligence, 31 lib., 2017.

Tan H. and Bansal M. LXMERT: learning cross-modality encoder representations
from transformers. In Inui K., Jiang J., Ng V., and Wan X., editors, Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, 5099–5110.
Association for Computational Linguistics, 2019.

Tan H. and Bansal M. Vokenization: Improving language understanding with con-
textualized, visual-grounded supervision. Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2066–2080,
2020.

Touvron H., Martin L., Stone K., Albert P., Almahairi A., Babaei Y., Bashlykov
N., Batra S., Bhargava P., Bhosale S., et al.. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Tulshan A.S. and Dhage S.N. Survey on virtual assistant: Google assistant, siri,
cortana, alexa. International symposium on signal processing and intelligent
recognition systems, 190–201. Springer, 2018.

Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser
L., and Polosukhin I. Attention is all you need. In Guyon I., von Luxburg
U., Bengio S., Wallach H.M., Fergus R., Vishwanathan S.V.N., and Garnett
R., editors, Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, 5998–6008, 2017.

Wallace B., Dang M., Rafailov R., Zhou L., Lou A., Purushwalkam S., Ermon S.,
Xiong C., Joty S., and Naik N. Diffusion model alignment using direct pref-
erence optimization. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 8228–8238, 2024.

Wang H., Li J., Wu H., Hovy E., and Sun Y. Pre-trained language
models and their applications. Engineering, 25:51–65, 2023. ISSN

108



BIBLIOGRAPHY

2095-8099. URL https://www.sciencedirect.com/science/
article/pii/S2095809922006324.

Wang P., Wu Q., Shen C., Dick A., and van den Hengel A. Explicit knowledge-
based reasoning for visual question answering. Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI-17, 1290–1296,
2017a.

Wang P., Wu Q., Shen C., Dick A., and Van Den Hengel A. Fvqa: Fact-based
visual question answering. IEEE transactions on pattern analysis and machine
intelligence, 40(10):2413–2427, 2017b.

Wang P., Yang A., Men R., Lin J., Bai S., Li Z., Ma J., Zhou C., Zhou J., and
Yang H. Ofa: Unifying architectures, tasks, and modalities through a simple
sequence-to-sequence learning framework. International Conference on Ma-
chine Learning, 23318–23340. PMLR, 2022a.

Wang Z., Li M., Xu R., Zhou L., Lei J., Lin X., Wang S., Yang Z., Zhu C., Hoiem
D., et al.. Language models with image descriptors are strong few-shot video-
language learners. Advances in Neural Information Processing Systems, 35:
8483–8497, 2022b.

Wang Z., Yu J., Yu A.W., Dai Z., Tsvetkov Y., and Cao Y. Simvlm: Sim-
ple visual language model pretraining with weak supervision. arXiv preprint
arXiv:2108.10904, 2021.

Wei J., Bosma M., Zhao V., Guu K., Yu A.W., Lester B., Du N., Dai A.M., and Le
Q.V. Finetuned language models are zero-shot learners. International Confer-
ence on Learning Representations, 2022a. URL https://openreview.
net/forum?id=gEZrGCozdqR.

Wei J., Tay Y., Bommasani R., Raffel C., Zoph B., Borgeaud S., Yogatama D.,
Bosma M., Zhou D., Metzler D., et al.. Emergent abilities of large language
models. Transactions on Machine Learning Research, 2022b.

Wei J., Wang X., Schuurmans D., Bosma M., Xia F., Chi E., Le Q.V., Zhou D.,
et al.. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022c.

109

https://www.sciencedirect.com/science/article/pii/S2095809922006324
https://www.sciencedirect.com/science/article/pii/S2095809922006324
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR


BIBLIOGRAPHY

Wolf T., Debut L., Sanh V., Chaumond J., Delangue C., Moi A., Cistac P., Rault
T., Louf R., Funtowicz M., Davison J., Shleifer S., von Platen P., Ma C., Jer-
nite Y., Plu J., Xu C., Scao T.L., Gugger S., Drame M., Lhoest Q., and Rush
A.M. Transformers: State-of-the-art natural language processing. Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Process-
ing: System Demonstrations, 38–45, Online, October 2020. Association for
Computational Linguistics.

Wu J., Hu Z., and Mooney R. Generating question relevant captions to aid visual
question answering. Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 3585–3594, 2019.

Wu J., Lu J., Sabharwal A., and Mottaghi R. Multi-modal answer validation
for knowledge-based vqa. Proceedings of the AAAI Conference on Artificial
Intelligence, 36 lib., 2712–2721, 2022.

Xie N., Lai F., Doran D., and Kadav A. Visual entailment: A novel task for
fine-grained image understanding. arXiv preprint arXiv:1901.06706, 2019.

Xie S., Girshick R., Dollár P., Tu Z., and He K. Aggregated residual transfor-
mations for deep neural networks. Proceedings of the IEEE conference on
computer vision and pattern recognition, 1492–1500, 2017.

Xu T., Zhang P., Huang Q., Zhang H., Gan Z., Huang X., and He X. Attngan:
Fine-grained text to image generation with attentional generative adversarial
networks. Proceedings of the IEEE conference on computer vision and pattern
recognition, 1316–1324, 2018.

Yang Z., Gan Z., Wang J., Hu X., Lu Y., Liu Z., and Wang L. An empirical
study of gpt-3 for few-shot knowledge-based vqa. Proceedings of the AAAI
Conference on Artificial Intelligence, 36 lib., 3081–3089, 2022.

Yang Z., Wang J., Gan Z., Li L., Lin K., Wu C., Duan N., Liu Z., Liu C., Zeng M.,
et al.. Reco: Region-controlled text-to-image generation. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 14246–
14255, 2023.

Yang Z., Dai Z., Yang Y., Carbonell J., Salakhutdinov R.R., and Le Q.V. Xlnet:
Generalized autoregressive pretraining for language understanding. Advances
in neural information processing systems, 32, 2019.

110



BIBLIOGRAPHY

Yasunaga M., Aghajanyan A., Shi W., James R., Leskovec J., Liang P., Lewis M.,
Zettlemoyer L., and Yih W.t. Retrieval-augmented multimodal language mod-
eling. Proceedings of the 40th International Conference on Machine Learning,
39755–39769, 2023.

Yu L., Shi B., Pasunuru R., Muller B., Golovneva O., Wang T., Babu A., Tang
B., Karrer B., Sheynin S., et al.. Scaling autoregressive multi-modal models:
Pretraining and instruction tuning. arXiv preprint arXiv:2206.10789, arXiv–
2309, 2023.

Zeng A., Attarian M., Choromanski K.M., Wong A., Welker S., Tombari F., Puro-
hit A., Ryoo M.S., Sindhwani V., Lee J., et al.. Socratic models: Compos-
ing zero-shot multimodal reasoning with language. The Eleventh International
Conference on Learning Representations, 2022a.

Zeng Y., Zhang X., and Li H. Multi-grained vision language pre-training: Align-
ing texts with visual concepts. In Chaudhuri K., Jegelka S., Song L., Szepes-
vari C., Niu G., and Sabato S., editors, Proceedings of the 39th Interna-
tional Conference on Machine Learning, 162 lib. of Proceedings of Machine
Learning Research, 25994–26009. PMLR, 17–23 Jul 2022b. URL https:
//proceedings.mlr.press/v162/zeng22c.html.

Zeng Y., Zhang X., Li H., Wang J., Zhang J., and Zhou W. X22-vlm: All-in-
one pre-trained model for vision-language tasks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(5):3156–3168, 2024.

Zhai X., Kolesnikov A., Houlsby N., and Beyer L. Scaling vision transform-
ers. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 12104–12113, 2022a.

Zhai X., Wang X., Mustafa B., Steiner A., Keysers D., Kolesnikov A., and Beyer
L. Lit: Zero-shot transfer with locked-image text tuning. Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, 18123–
18133, 2022b.

Zhang C., Van Durme B., Li Z., and Stengel-Eskin E. Visual commonsense in
pretrained unimodal and multimodal models. Proceedings of the 2022 Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 5321–5335, 2022.

111

https://proceedings.mlr.press/v162/zeng22c.html
https://proceedings.mlr.press/v162/zeng22c.html


BIBLIOGRAPHY

Zhang P., Li X., Hu X., Yang J., Zhang L., Wang L., Choi Y., and Gao J.
Vinvl: Making visual representations matter in vision-language models. CoRR,
abs/2101.00529:5579–5588, 2021.

112



Glosategia

aro epoch

artearen egoera state of the art

asmatze-tasa accuracy

aurrentrenatu pretrain

ausazko mozketa random crop

azpimultzo split

batezbesteko mugikor esponentziala exponential moving average

bateratze ensemble

bektore geruza embedding layer

bizkarrezur eredua backbone model

datu gehikuntza data augmentation

datu-multzo dataset

doikuntza fine-tuning

doitu to fine-tune

entropia gurutzatu bitarra binary cross-entropy

ereduaren gaitasuna model capacity

113



GLOSATEGIA

erro bilaketa stemming

eskalatze legea scaling law

etiketa, klase label

ezagutza behar handiko knowledge intensive

ezagutza iturri knowledge base

fusio goiztiar early fusion

fusio berantiar late fusion

ikusizko galdera-erantzute visual question-answering

galdera ireki open ended question

geruza anitzeko perzeptroi multilayer perceptron

geruza ezkutu hidden layer

goiburuko sortzaile caption generator

hirukote espaziala spatial triplet

hizkuntza eredu language model

ikasketa gidatu teacher forcing

ikasketa tasa learning rate

ikusizko inferentzia visual entailment

ikusizko hizkuntza-ereduak vision-and-language models

ikusmen-testu visio-linguistic

iraulketa horizontala horizontal flip

irudi eskualdeen ezaugarriak visual region features

irudi goiburuko sorkuntza image captioning

kaxa inguratzailea bounding box

114



klase leuneko entropia gurutzatua soft cross entropy

kokapen token location token

modalitate anitz multimodal

munduko ezagutza world knowledge

objektu-kokapenen sorrera layout generation

oinarritu to ground

oinarritze grounding

posizio bektore position embedding

sailkapen buru classification head

sailkapen geruza classification layer

sorta tamaina batch size

sorta tamaina efektiboa effective batch size

testu bidezko irudi sorkuntza text-to-image generation

testuinguru bidezko ikasketa in-context learning

xede orokor general purpose

zarata-ezabatze prozesua denoising process

115





A. APPENDIX

Original papers

In this appendix, we present the original papers presented in the manuscript of this

thesis in the recommended reading order.

117



Image Captioning for Effective Use of Language Models
in Knowledge-Based Visual Question Answering

Ander Salaberria, Gorka Azkune, Oier Lopez de Lacalle, Aitor Soroa, Eneko Agirre
HiTZ Center, University of the Basque Country (UPV/EHU)

{ander.salaberria, gorka.azcune, oier.lopezdelacalle,
a.soroa, e.agirre}@ehu.eus

Abstract

Integrating outside knowledge for reasoning
in visio-linguistic tasks such as visual ques-
tion answering (VQA) is an open problem.
Given that pretrained language models have
been shown to include world knowledge, we
propose to use a unimodal (text-only) train
and inference procedure based on automatic
off-the-shelf captioning of images and pre-
trained language models. Our results on a vi-
sual question answering task which requires
external knowledge (OK-VQA) show that our
text-only model outperforms pretrained mul-
timodal (image-text) models of comparable
number of parameters. In contrast, our model
is less effective in a standard VQA task (VQA
2.0) confirming that our text-only method is
specially effective for tasks requiring external
knowledge. In addition, we show that our uni-
modal model is complementary to multimodal
models in both OK-VQA and VQA 2.0, and
yield the best result to date in OK-VQA among
systems not using external knowledge graphs,
and comparable to systems that do use them.
Our qualitative analysis on OK-VQA reveals
that automatic captions often fail to capture rel-
evant information in the images, which seems
to be balanced by the better inference ability
of the text-only language models. Our work
opens up possibilities to further improve infer-
ence in visio-linguistic tasks.1

1 Introduction

Most visio-linguistic tasks are framed in such a way
that all the necessary information to solve them is in
the images and texts provided in the dataset. That
is the case of visual question-answering (VQA)
(Antol et al., 2015) or visual entailment (Xie et al.,
2019), to name a few. In addition, some tasks re-
quire access to external knowledge in order to solve
them. An example is Outside Knowledge VQA
(OK-VQA) (Marino et al., 2019), where the image

1Our code will be publicly available soon.

C: Three teddy bears sitting next 
to each other on a couch.

Q: Which american 
president is most 

associated with the stuffed 
animal seen here?

Image
Captioning
System

Language
Model

A: Teddy Roosevelt

Figure 1: Given a question and image, we verbalize the
contents of the image and apply a pretrained language
model for inference. We show that current text-only
models are better in generalization and inference than
multimodal models for knowledge-based QA.

content is not sufficient to answer the questions.
Contrary to self-contained VQA tasks, which can
be solved grounding images and text alone, these
tasks require methods that leverage external knowl-
edge resources and are able to do inference on that
knowledge.

External knowledge useful for OK-VQA can be
broadly classified into two categories, according
to (Marino et al., 2020): (i) symbolic knowledge,
which can be represented using graphs, for example
ConceptNet (Speer et al., 2017), and (ii) implicit
knowledge, which is encoded in the weights of
neural networks trained in different datasets. Sup-
porting the later case, transformer-based language
models (LM) pretrained in large corpora like BERT
(Devlin et al., 2019) have been successfully used as
implicit knowledge bases (Petroni et al., 2019). In
any case, the best results on the OK-VQA dataset
have been reported by systems that use both pre-
trained models and symbolic knowledge, usually
integrating external knowledge sources (Gardères



et al., 2020; Marino et al., 2020; Wu et al., 2021;
Shevchenko et al., 2021).

In this paper we focus on the use of implicit
knowledge in the form of pretrained LMs. While
using LMs is relatively common in OK-VQA, they
are usually integrated into multimodal transformers
by diverse means, so as to integrate the visual and
textual inputs of the task. Given that LMs were
originally designed to process textual input and
are extensively trained in textual corpora, we hy-
pothesized that a system that relies exclusively on
text will allow LMs to better leverage their implicit
knowledge. Because OK-VQA is a visio-linguistic
task, we propose to use automatic image caption-
ing as a way to verbalize the information in the
image, where the captions are descriptions of the
images which are used as input to the LMs. Once
the captions are generated, all the inference in our
method is done using text-only models. We are
aware that captions do not contain all the informa-
tion in an image, and want to check whether the
text-only models can compensate for that initial
loss of information.

The approach proposed in this paper, named
caption-based model, can be seen in Figure 1.

To validate our hypothesis, we present an ex-
tensive experimentation on the OK-VQA dataset,
comparing our proposed caption-based model with
the de facto standard of visio-linguistic tasks, i.e.
multimodal transformers, which are widely used in
VQA tasks to process the questions (text) and the
images. We also analyze the compatibility between
images and captions based on two different fusion
strategies. As a result of our experiments, we find
that:

• Captions are more effective than images for
OK-VQA when pretrained language and mul-
timodal models are used as is, and achieve
similar results when both are fine-tuned on
additional VQA datasets.

• The combination of the two approaches im-
proves results further, showing that the text-
only and multimodal models make comple-
mentary inferences.

• The larger contribution of captions on OK-
VQA with respect to results on a regular VQA
dataset (Goyal et al., 2017) show that our text-
only system is specially effective when exter-
nal knowlede is needed.

• Our combined system is best among systems
using implicit knowledge only, and nearly
matches the results of state-of-the-art systems
that integrate symbolic knowledge graphs.

2 Related Work

There are many visual question-answering
datasets in the literature (Antol et al., 2015; Goyal
et al., 2017; Johnson et al., 2017), where given an
image and a question about the contents of that
image, a system has to provide a textual answer.
Some VQA datasets also demand leveraging ex-
ternal knowledge to infer the answer and, thus,
they are known as knowledge-based VQA tasks.
Good examples are KB-VQA (Wang et al., 2017b),
KVQA (Sanket Shah and Talukdar, 2019), FVQA
(Wang et al., 2017a) and OK-VQA (Marino et al.,
2019). KVQA requires knowledge about named
entities (e.g. Barack Obama, White House, United
Nations) and that knowledge is already provided as
a graph. FVQA annotates questions by selecting a
fact from a fixed knowledge base but its size is rel-
atively small. KB-VQA is even smaller, presenting
template-based questions whose answers can be ob-
tained reasoning over commonsense resources or
Wikipedia. In contrast, OK-VQA requires knowl-
edge from unspecified external resources and, al-
though smaller than KVQA in terms of the number
of images and question-answer pairs, it is consider-
ably bigger than the other knowledge-based VQA
datasets.

Currently, multimodal transformers are the
most successful systems for VQA and can be
broadly classified into two types: single-stream and
double-stream transformers. A good example of
the former is VisualBERT (Li et al., 2019), where
the BERT architecture (Devlin et al., 2019) is used,
adding visual features obtained by an object detec-
tor as input and using visio-linguistic pretraining
tasks, such as image-text matching. OSCAR (Li
et al., 2020) also follows a very similar philoso-
phy, adding object tags to the input and proposing
different pretraining strategies. Among double-
stream transformers, VilBERT (Lu et al., 2019)
and LXMERT (Tan and Bansal, 2019) use a dedi-
cated transformer for each modality (text and im-
age) to fuse them with a cross-modal transformer.
Their differences lie mainly on some architectural
choices and pretraining task selection.

Regarding OK-VQA systems, multimodal
transformers have also been used to provide im-



plicit knowledge from pretraining tasks. For exam-
ple, VilBERT uses a pretrained BERT to encode
the questions, so it uses the implicit knowledge that
BERT acquired during its pretraining. Additionally,
VilBERT is further trained on Conceptual Captions
(Sharma et al., 2018), a very large image-caption
dataset from where additional knowledge can be
acquired. Those multimodal transformers are the
backbone of the best performing systems for OK-
VQA, which also use symbolic knowledge to bring
some extra performance.

ConceptBert (Gardères et al., 2020) was the first
system to use multimodal transformers and sym-
bolic knowledge for OK-VQA. It is based on a com-
bination of a pretrained BERT to encode questions,
a graph convolutional neural network to encode
triples extracted from the ConceptNet knowledge
graph (Speer et al., 2017) and a multimodal trans-
former (VilBERT) to jointly represent and reason
over image features and encoded question tokens.

A similar approach was followed by KRISP
(Marino et al., 2020), combining again a mul-
timodal transformer with symbolic knowledge.
In this case, the multimodal transformer, called
MMBERT, is based on VisualBert (Li et al., 2019)
and initialized with the weights of a pretrained
BERT. Additionally, authors built a knowledge
graph fusing DBPedia (Auer et al., 2007), Concept-
Net (Speer et al., 2017), VisualGenome (Krishna
et al., 2017) and hasPart KB (Bhakthavatsalam
et al., 2020). They used different image feature
encoders and the question tokens to obtain a subset
of the full graph relevant to the target question and
image. Finally, using a graph convolutional neural
network, they combined the symbolic and implicit
knowledge to predict the final answer.

Some recent approaches, named MAVEx (Wu
et al., 2021) and RVL (Shevchenko et al., 2021)
showed different ways to combine implicit and
symbolic knowledge. MAVEx used a pretrained
VilBERT to generate various candidate answers
which were later validated using answer-specific
knowledge retrieval. Authors used both textual
and visual knowledge resources, including images
searched using Google, sentences from Wikipedia
articles, and concepts from ConceptNet. On the
other hand, RVL trained the two-stream multi-
modal transformer LXMERT (Tan and Bansal,
2019) with an auxiliary objective that aligned its
representations with knowledge graph embeddings
retrieved from ConceptNet and Wikidata.

Regarding the use of captions for VQA, to the
best of our knowledge, Mucko (Zhu et al., 2020)
is the only system that explores this idea. Mucko
uses dense captions (Johnson et al., 2016) to query
a knowledge graph to extract relevant information
to answer the question. The reported results on OK-
VQA are well below the state-of-the-art. Dense
captions describe different regions of an image us-
ing short sentences. Our method differs in the use
of a single caption which is the input to the LM,
and does not require any knowledge graph.

3 Implemented models

In this section we describe the implemented mod-
els. We use Pytorch (Paszke et al., 2019) and the
Transformers library (Wolf et al., 2020) for all the
implementation work.

3.1 Caption-based model (CBM)

Our caption-based model, denoted by CBM, is di-
vided in two steps: (i) a caption generation system
that generates a short description of a given image
and (ii) a language model that takes this caption
and a question in order to answer it.

We use OSCAR (Li et al., 2020) to generate
captions from images, a transformer encoder that
produces state-of-the-art results on several multi-
modal tasks including image captioning. As it is
common in multimodal transformers, OSCAR uses
a pretrained object detector called FasterRCNN
(Ren et al., 2015) to obtain region features from
images and their respective labels. Both features
and labels alongside manually annotated captions
are then fed to the transformer during pretraining,
following the work of (Anderson et al., 2018). The
performance on image-captioning of both base and
large models is similar, so we use OSCAR-base as
our image-captioning system for all of our experi-
ments.

During OSCAR’s fine-tuning step on image cap-
tioning, some of OK-VQA’s test split images and
gold captions are used. In order to ensure fairness
and avoid any contamination in our experiments,
we fine-tune a pretrained OSCAR model on image-
captioning removing these instances from its train-
ing process.

On the other hand, the LM we use in all the ex-
periments is a pretrained BERT-base model (De-
vlin et al., 2019). We feed sequences of tok-
enized captions and questions T (0) = {t(0)i |i =
1, . . . , nt} to BERT, and take the output of the



[CLS] or first token of the sequence t
(nl)
1 , where

nt is the number of tokens in the sequence and nl

is the number of transformer layers.
Although VQA (Antol et al., 2015; Goyal et al.,

2017) and OK-VQA (Marino et al., 2019) were
defined with open-ended answers, recent state-of-
the-art models (Zhang et al., 2021; Marino et al.,
2020) cast these tasks as classification problems,
building a fixed vocabulary of answers from the
training dataset. In order to fine-tune the language
model for VQA, we add a classification head to
the [CLS] embedding. Our classification head is a
multilayer perceptron (MLP) with one hidden layer
after t(nl)

1 . We define our MLP in Eq. 1.

h = LayerNorm(GELU(Wht
(nl)
1 + bh))

ŷ = Softmax(Wŷh+ bŷ)
(1)

We use a GELU activation function as well as
layer normalization (Ba et al., 2016). The trainable
parameters are Wh ∈ Rdh×dh , bh ∈ Rdh , Wŷ ∈
Rdh×nlabel and bŷ ∈ Rnlabel , where nlabel equals
to the number of labels on a given classification
task and dh equals to 768.

3.2 Question-only baseline (BERTQ)
In order to assess the contribution of captions, we
also trained a model which only had the question in
the input, without any information about the image
or caption, denoted as BERTQ. This model can be
seen as an ablation of CBM.

3.3 Multimodal transformer (MMBERT)
We compare our CBM model with the mul-
timodal transformer-based MMBERT (Marino
et al., 2020), a variant of BERT that uses the ques-
tion text and image region features as input. While
BERT is designed to only process textual inputs,
MMBERT adapts its embedding layer in order to
be able to process features from images.

We use a FasterRCNN with a ResNeXt-152 (Xie
et al., 2016) as its backbone to extract a total of
nv region features V = {v1, . . . ,vnv} per image.
Each of these vi ∈ Rdv features represents an ob-
ject that appears in the image, where dv equals to
2048. V lacks the positional information between
objects, which can be solved concatenating the
corresponding bounding box coordinates to each
feature. Upon some initial experiments, we con-
cluded that this extra information does not improve
performance in any of VQA 2.0 and OK-VQA. We

use MMF Multimodal Framework (Singh et al.,
2020) to extract the image region features that are
fed into MMBERT.

In order to allow for easier comparison between
our CBM and MMBERT we use the output rep-
resentation for [CLS] to feed into the classifica-
tion multilayer perceptron (see Section 3.1). Note
that this is slightly different from the original
MMBERT (Marino et al., 2020), which uses the
average of all token representations in the last trans-
former layer.

3.4 Loss function

Contrary to previous works in VQA, we do not use
binary cross-entropy loss, as initial experiments
showed that cross-entropy loss with soft labels
(SCE) converges faster with similar results. SCE
loss is defined in Eq. 2, where y is the ground truth
vector with probabilities proportional to the VQA
evaluation metric (Eq. 3) assigned to each class.

LSCE(y, ŷ) = −y · log ŷ (2)

3.5 Combining both modalities

We are also interested in analyzing the complemen-
tarity of both models, i.e. the text-only modality
using questions and captions, and the image-text
modality with image region features and questions.
Therefore, we define two different approaches to
check how they complement each other.

Early fusion. For each question we feed both
caption and image features alongside the question
to the language model. This system can be seen as
a MMBERT which processes a multimodal input
composed by a question (text), a caption (text) and
image region features. We initialize the weights of
this model with the weights of the base language
model (BERT-base) and fine-tune it on the target
train data.

Late fusion. We train the caption-based model
(Section 3.1) and MMBERT (Section 3.3) sepa-
rately, each of them with their corresponding in-
puts, and combine their outputs in inference time
to obtain the final answer. The combination is done
by multiplying output probabilities of both mod-
els for each class and taking the answer with the
highest value.

4 Datasets

The main dataset for our experiments is OK-VQA
(Marino et al., 2019), since it allows us evaluating



VQA: What is the weather like? cloudy
OK-VQA: Why would one suspect that this is 
not chicago? sign

VQA: What color is the bear? brown
OK-VQA: What species of bear is this? grizzly

VQA: Are the animals in captivity? yes
OK-VQA: Which valuable material grows on this 
animal's face? ivory

Figure 2: Some examples of VQA 2.0 and OK-VQA datasets for the same images. VQA questions are about
image contents, while OK-VQA questions require outside knowledge.

the usage of the implicit knowledge of LMs in a
multimodal task. But we also run experiments on
the VQA 2.0 dataset (Goyal et al., 2017) with a
double motivation: (i) to use it as additional pre-
training before applying the model to OK-VQA;
(ii) to analyze the performance differences among
models on a knowledge-based VQA dataset and a
standard VQA dataset. Examples of both datasets
can be found in Figure 2.

4.1 VQA 2.0

This dataset contains open-ended questions about
images where questions focus on identifying ob-
jects in the image and their attributes, detecting
relations between them, as well as counting those
objects. The dataset is composed of 204K images
taken from the COCO dataset (Lin et al., 2014) and
1.1M questions, each question having 10 (possibly
repeated) annotations as accepted answers. Follow-
ing the classification setting of VQA tasks, which
is currently the dominant paradigm, VQA 2.0 has
3129 different possible answers, extracted from the
most frequent answers of the training split.

VQA 2.0 is divided in three splits named train,
dev and test. Some of the images from the devel-
opment split of VQA 2.0 are reused in OK-VQA’s
test split. So, in order to avoid any contamination,
we do not use the VQA 2.0 dev set for any training
or hyper-parameter tuning.

(Antol et al., 2015) proposed a standard evalua-
tion metric for VQA tasks where a system answer is
considered totally correct if it appears at least three
times in the ten ground-truth annotations. Con-
sidering that a given answer appears x times in
a question’s annotations, this accuracy metric is
defined in Eq. 3.

acc = min
(x
3
, 1
)

(3)

4.2 OK-VQA

The OK-VQA dataset is built upon 14,031 images
from the COCO dataset and 14,055 crowd-sourced
questions. Each question has ten annotated answers
(possibly repeated), and the evaluation metric is the
same as in VQA 2.0 (Eq. 3). As a knowledge-based
VQA dataset, OK-VQA requires outside knowl-
edge to answer the questions. However, this outside
knowledge is neither provided nor identified, i.e.
there is not a list of available knowledge sources
for this task, making the task more challenging.

There are two versions of this dataset, depend-
ing on how the stemming of the answers provided
by the crowd-sourcers is handled. The stemming
used in OK-VQA v1.0 results in some “non-word”
answers (such as “poni tail” instead of “pony tail”).
OK-VQA v1.1 applied a different stemming algo-
rithm, resulting in a more coherent answer vocab-
ulary. We use OK-VQA v1.1 through our experi-
ments, except for the state-of-the-art comparison,
as most published systems report results on the
v1.0 version.

5 Experiments and results

This section provides results of the models defined
in Section 3 and compare them with the state-of-
the-art.

5.1 Experimental settings

We use the same hyperparameters as (Marino et al.,
2020) for fine-tuning CBM, MMBERT, BERTQ

and Early fusion models both in VQA 2.0 and OK-
VQA tasks. We train our models for 88K steps
using AdamW optimizer (Loshchilov and Hutter,
2019). Our batch size is of 56 with a maximum
learning rate of 5·10−5 following a cosine schedule
with a linear warmup of 2K steps. All experiments
have been run in a single GPU with 12GB of vRAM



Model Acc.
Without VQA pretraining
BERTQ 21.2 ±0.2

MMBERT 29.6 ±0.6

CBM (ours) 32.5 ±0.4

With VQA pretraining
BERTQ 23.0 ±0.2

MMBERT 35.7 ±0.3

CBM (ours) 36.0 ±0.4

Table 1: Performance on OK-VQA for the three models
(respectively, question only, image-based and caption-
based) withouth and with additional pretraining on
VQA 2.0. Mean accuracy and standard deviation across
3 different runs.

and their runtimes are at most of 12 hours.

5.2 Images vs. captions

Table 1 shows the results for the three models pre-
sented in Section 3, which share the same archi-
tecture and initial parameters. Topmost rows for
the models fine-tuned only on OK-VQA (tagged as
“Without VQA pretraining”), and the bottom rows
for the same models which have been fine-tuned
on VQA 2.0 before being fine-tuned on OK-VQA.

We observe that the sole use of questions
BERTQ offers poor performance compared to the
other two systems, achieving up to 13 points less
accuracy. This shows that having any representa-
tion of the image (captions or image region fea-
tures) is key to answer questions correctly. This is
further justified comparing the improvement that
VQA pretraining entails, as BERTQ improves less
than 2 points, whereas the other two improve their
accuracy between 4-6 points.

Contribution of captions. When we compare
the performance of CBM and MMBERT, we see
that, when there is no visio-linguistic pretraining
involved, CBM performs better in OK-VQA. How-
ever, when we pretrain these models in a similar
multimodal task like VQA 2.0, their accuracy in-
creases by 4-6 points and both obtain similar per-
formance. As OK-VQA’s training is comparatively
smaller (9K instances vs. VQA’s 410K instances),
we hypothesize that training MMBERT on OK-
VQA is not enough to adapt the model to the new
input modality. However, as CBM uses only text,
the fine-tuning with such small training is more
effective.

Model Acc.
Without VQA pretraining
Early fusion 32.5 ±0.4

Late fusion 34.0 ±0.4

With VQA pretraining
Early fusion 38.2 ±0.8

Late fusion 38.6 ±0.2

Table 2: Performance on OK-VQA for early and late
fusion models. Mean accuracy and standard deviation
across 3 different runs.

5.3 Combining CBM and MMBERT

Given the different nature of the inputs, we wanted
to check whether CBM and MMBERT are com-
plementary. Our hypothesis is that the former can
take advantage of the implicit knowledge acquired
by the language model, whereas the latter has ac-
cess to more fine-grained information found in im-
age regions. Following the approaches of early and
late fusion defined in Section 3.5, we show their
performance in Table 2.

These fusion models improve the performance
of both CBM and MMBERT by 2-3 points in al-
most all cases. The only case where there is no
improvement comparing to CBM is in the early fu-
sion without VQA pretraining. This may be caused
again by the small training split of OK-VQA, caus-
ing difficulties to learn how to ground textual and
visual modalities. However, this is solved when
VQA pretraining is added to the model, increasing
vastly the amount of data seen by the models and
showing similar performance on both early and late
fusion models. The results validate our hypothesis,
showing that image region features and captions
are complementary.

5.4 Comparison with the state of the art

To compare our models with state-of-the-art mod-
els in OK-VQA, we had to repeat the experiments
in OK-VQA v1.0. The results vary slightly, as can
be seen in Table 3. In that table, we show the results
of various models using only implicit knowledge
and combining it with symbolic knowledge. As
our models do not use symbolic knowledge, the
corresponding column is empty.

The performance of KRISP (Marino et al., 2020),
MAVEx (Wu et al., 2021) and RVL (Shevchenko
et al., 2021) is very similar. But RVL has a contam-
ination issue as images from OK-VQA’s test split
were used to train their multimodal transformer. In



Model Imp. +Sym.
ConceptBERT 31.4 33.7
KRISP *36.3 38.4
RVL †37.3 †39.0
CBM (ours) 36.3 -
Late fusion (ours) 39.2 -

(a) Results on OK-VQA v1.0.

Model Imp. +Sym.
MAVEx 35.2 38.7
KRISP 37.1 38.9
CBM (ours) 36.0 -
Late fusion (ours) 38.6 -

(b) Results on OK-VQA v1.1.

Table 3: Comparison to the state-of-the-art on OK-
VQA. Results are divided in two tables, one per OK-
VQA version. Topmost rows of each table are taken
from respective papers, except *, computed by us. Imp.
for implicit knowledge, +Sym. for systems additionally
using symbolic knowledge. † for contaminated results
(see main text).

Table 3 we observe that using symbolic knowledge
improves the results around 2 points in average.
The highest improvement is achieved by MAVEx
with 3.5 points2. Notice that all four systems use
different ways to integrate symbolic knowledge
from different resources.

If we look at our caption-based model CBM, we
see that its performance is on par with the mul-
timodal transformers used by the other systems.
We believe this is remarkable, since we do not use
directly any visual features in our models. Fur-
thermore, when we use late fusion, the results we
obtain are comparable to the systems which also
use symbolic knowledge. Notice that we only use
implicit knowledge for our systems and match the
performance of systems which combine implicit
and symbolic knowledge.

6 Analysis

In this section we first contrast the results on OK-
VQA with those obtained in VQA 2.0, discussing
the reasons for the different performance. We then
compare the performance of CBM with manually
annotated captions or the ones generated by OS-
CAR (Li et al., 2020); and, finally, we present some

2An ensemble composed by 5 MAVEx models with the
same multimodal transformer achieves an accuracy of 39.4%.

Model Acc.
MMBERT 65.8
CBM (ours) 59.6
Early fusion (ours) 67.8
Late fusion (ours) 67.7

Table 4: Performance on dev split of VQA 2.0.

qualitative analysis.

6.1 Results on VQA 2.0

Even though both unimodal and multimodal meth-
ods perform similarly in OK-VQA, we observed
a different trend in VQA 2.0. Table 4 shows that
CBM obtains 59.6, while MMBERT achieves 6
points more. We think this is due to the information
loss when converting an image into a caption, as
relevant information that is needed to answer the
question can be lost. This is specially important for
VQA 2.0, where the questions refer directly to im-
age contents, spatial relations and object attributes
(see Figure 2). Captions do not usually provide
that additional information, and tend to focus on
the description of the most relevant information.
However, looking at the performance in OK-VQA,
we see that captions contain enough information to
effectively use the implicit knowledge of the BERT
language model.

Regarding early and late fusion models, both of
them improve the performance of MMBERT by 2-
3 points, showing that our model is complementary
to multimodal methods also in the VQA dataset.

6.2 Ground truth captions

In order to measure the effects of the image cap-
tioning system to our proposed CBM model, we
check the gap of performance between the use of
generated captions and gold captions. As OK-VQA
is built upon images from the COCO dataset (Lin
et al., 2014), each image has five different anno-
tated captions. We use these captions and fine-tune
CBM on OK-VQA without VQA pretraining fol-
lowing the same experimental settings. We repeat
this experiment three times, as it is done through
the entire work. On each run we select a differ-
ent set of captions, that is, for each image we just
choose one gold caption randomly and use it during
the entire training process. As we also have several
captions in all of OK-VQA’s test split, we test each
fine-tuned model three times following the same
caption selection process.



C: A person holding a baby in front of an 
elephant.

Q: Where would you find the animal in the 
background in the wild?

GT: Africa
CBM: Africa  MMBERT: Wood

C: A man holding a bunch of green 
bananas in a store.

Q: What mineral is found in this fruit?

GT: Potassium
CBM: Potassium  MMBERT: Calcium

C: A white plate topped with meat and a 
salad.

Q: How was the side cooked?

GT: Grilled
CBM: Fried  MMBERT: Grilled

C: A bunch of cups sitting next to each 
other in a kitchen.

Q: What drink is being prepared?

GT: Smoothie
CBM: Tea  MMBERT: Smoothie

C: A group of people standing under a 
traffic light.

Q: What should someone do when the 
light on these items is green?

GT:Go
CBM: Go  MMBERT: Stop

C: A baseball player holding a bat on top 
of a field.

Q: In this game how many strikes until you 
are out?

GT: 3
CBM: 100  MMBERT: 3

Figure 3: Examples of OK-VQA questions where only one of the two models (CBM or MMBERT) answers
correctly according to the ground truth (GT). C refers to captions generated by OSCAR. Correct answer in green,
incorrect in red.

Table 1 already shows that we achieve an accu-
racy and standard deviation of 32.5±0.4 using gen-
erated captions on OK-VQA’s test split. However,
when we use gold captions we get an average accu-
racy of 32.3± 0.3 in all of our runs. In both cases
we obtain similar results, showing that captions
generated by OSCAR contain enough information
for CBM to perform comparably on this specific
task.

6.3 Qualitative Analysis on OK-VQA
Both unimodal and multimodal algorithms perform
similarly (see Table 1), but in 38.7% of the test
examples their output differs and only one of them
is correct. Figure 3 shows some OK-VQA test
examples together where the outputs of CBM and
MMBERT with VQA pretraining differ.

Starting with the top-left example, CBM can
infer that elephants are native to Africa whereas
MMBERT does not. In fact, the generated caption
includes the information that the animal found in
the image is an elephant, performing the first step
needed to answer the question. This way, the LM
can focus on using its implicit knowledge in order

to answer correctly.

The other two examples in the top row behave
similarly. The caption facilitates the grounding be-
tween the question and the image. Whenever a
question refers to the image (“this fruit” and “these
items”), if the caption already mentions these ob-
jects (“bananas” and “traffic light”, respectively),
the LM seems to better leverage its implicit knowl-
edge and reasoning capabilities to answer the ques-
tion. The top-right example is interesting in this
regard. While the image shows red traffic lights, the
question asks about the effects of green lights. This
may trick MMBERT into answering the effect that
red lights produce, not the green ones.

The bottom row of Figure 3 shows three exam-
ples where the caption does not give enough infor-
mation to infer the answer. In the first case CBM
can not decide whether the meat is steamed, fried
or grilled by only examining the caption, while
MMBERT does have access to visual cues of the
image, where we can see that the meat is grilled.
This also happens in the second example, as the
caption does not specify any ingredient of the bev-



erage while we can see fruits in the image. The
rightmost example illustrates an example where
the caption could support the inference, but where
CBM is wrong: with the given caption, “this game”
refers to baseball, however, CBM is unable to infer
that three strikes are enough for a strikeout whereas
MMBERT manages to give the correct answer.

All in all, these examples support our hypothesis
that visual features and captions are complemen-
tary. They also show that our system has some
advantages regarding the interpretability of the sys-
tem, specially in the cases our method is wrong. In
some cases like the two leftmost examples in the
bottom row, the object or feature needed to answer
the question is missing from the caption. In other
cases, the required information is in the caption,
but the inference is erroneous.

7 Conclusions

In this paper we present a VQA system which de-
scribes images with a caption to then ignore the
image completely. We show that such a system
performs surprisingly well in OK-VQA, where the
questions cannot be answered with the image alone,
requiring access to external knowledge. Our anal-
ysis indicates that the loss of information when
summarizing the image into a caption is compen-
sated by the better inference ability of text-only pre-
trained language models. In the future we would
like to explore whether richer descriptions of im-
ages might improve results further, and whether
text-only language models are more effective when
incorporating symbolic knowledge graphs than cur-
rent multimodal models.
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ABSTRACT

This paper shows that text-only Language Models (LM) can learn to ground spatial relations like left
of or below if they are provided with explicit location information of objects and they are properly
trained to leverage those locations. We perform experiments on a verbalized version of the Visual
Spatial Reasoning (VSR) dataset, where images are coupled with textual statements which contain
real or fake spatial relations between two objects of the image. We verbalize the images using an
off-the-shelf object detector, adding location tokens to every object label to represent their bounding
boxes in textual form. Given the small size of VSR, we do not observe any improvement when using
locations, but pretraining the LM over a synthetic dataset automatically derived by us improves results
significantly when using location tokens. We thus show that locations allow LMs to ground spatial
relations, with our text-only LMs outperforming Vision-and-Language Models and setting the new
state-of-the-art for the VSR dataset. Our analysis show that our text-only LMs can generalize beyond
the relations seen in the synthetic dataset to some extent, learning also more useful information than
that encoded in the spatial rules we used to create the synthetic dataset itself.

Keywords Spatial relations · Grounding · Language Models

1 Introduction

Spatial relations like left of or on top of can be naturally grounded to images. Thus, Vision-and-Language Models
(VLM) seem the most suitable option to ground the textual form to real world concept usage. However, general-purpose
VLMs such as CLIP [Radford et al., 2021], VisualBERT [Li et al., 2019], LXMERT [Tan and Bansal, 2019] or ViLT
[Kim et al., 2021] have been shown to struggle to ground spatial relations properly [Liu et al., 2022a,b]. The situation is
even worse for text-only LMs, which lag behind VLMs for spatial grounding [Liu et al., 2022a].

Spatial grounding and reasoning are very interesting for text-only tasks, as shown by various works [Liu et al., 2022a,
Mirzaee et al., 2021, Mirzaee and Kordjamshidi, 2022]. One alternative to solve those text-only tasks would be using
VLMs and feed them only with textual inputs. However, some researchers already identified that the language used
to train those VLMs is not as rich and varied as the language used for text-only tasks [Tan and Bansal, 2020], which
hinders the potential of VLMs for text-only tasks.

In this paper, we explore another avenue and we focus on spatial grounding for text-only LMs. Following the current
trend of translating visual information into textual information [Yang et al., 2022, Zeng et al., 2022, Wang et al., 2022,
Liu et al., 2022c], we propose to use textual tokens in a novel way to represent real-world scenes and leverage pretrained
LMs. More concretely, we propose to use location tokens to represent the positions and spatial extent of objects in a
scene. Our hypothesis is that those location tokens offer a way to ground spatial relations in the LM.

To validate that hypothesis, we run experiments on a verbalized version of the multimodal Visual Spatial Reasoning
(VSR) dataset [Liu et al., 2022b]. The dataset contains image-caption pairs, where the caption mentions a spatial
relation between two objects of the image, plus a true/false label, depending if the caption is true for the image. To
approach this task with a text-only LM, we use an off-the-shelf object detector, which returns object labels and their
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Caption: The cat is inside the toilet

Object detector object
labels

location 
tokens

LM Answer:
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bounding 
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Figure 1: Given an image and a caption with a spatial relation, the task in VSR is to output whether the caption is true
for the image. We propose a text-only alternative of the dataset, where an off-the-shelf object detector returns the labels
and locations (derived from the bounding boxes), which are used as the textual description of the scene depicted in the
image. The description and caption are input to a LM, to test its spatial grounding capabilities.

bounding boxes (BB). We convert the BB coordinates to four location tokens. We prepend the location tokens to the
corresponding object label (e.g. cat), and build a textual scene description that represents the contents and locations
in a given scene (Figure 1). Then, we only concatenate the provided caption with the aforementioned textual scene
description and train a LM for binary classification (Figure 1). This way, we can test the spatial grounding capabilities
of a text-only LM.

As a result of our experiments we show that:

1. Location tokens are effective to ground spatial relations, as shown by the positive results of our model.
2. The training set of VSR is too small for learning how to ground spatial relations to locations, but an au-

tomatically produced synthetic dataset of spatial relations allows to do so, while a LM without locations
fails.

3. The LMs trained on the synthetic dataset can generalize to some extent to spatial relations that have not been
observed in the synthetic data. Specially interesting is to see the performance boost for relations that require
depth information.

4. Our text-only LMs outperform baseline VLMs for VSR, obtaining the best results for the VSR task to date.
5. Our text-only LMs clearly outperform a rule-based baseline, showing that the LMs learn more information

than that encoded in the manually defined spatial rules.

Our code, models and datasets are freely available1.

2 Related work

Some authors suggest that grounding is one of the key elements to bring human-like language understanding [Bender
and Koller, 2020]. However, grounding covers a great diversity of techniques, modalities and concepts [van der Velde,
2015, Laflaquière et al., 2018]. Thus, this paper is focused on spatial relations and their grounding. In that sense, there
are two major domains related to this paper: how spatial grounding can be evaluated (Section 2.1), and how spatial
information is represented in current deep learning models, covering VLMs - which are the current paradigms of how to
ground text on visual data - and text-only LMs (Section 2.2).

2.1 Datasets for spatial grounding

The spatial commonsense knowledge of current LMs and VLMs is evaluated from different angles. For example,
[Bagherinezhad et al., 2016, Elazar et al., 2019] focus on the acquired commonsense knowledge of models about object
scales, e.g. do they know that a person is bigger than an ant? In that sense, they do not provide a specific scene context,
but rather ask about generic object scale relations, so the dataset they provide is not useful for our work.

1https://github.com/gazkune/SpatialLM
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Some other authors, [Collell et al., 2018, Elu et al., 2021] propose datasets and methods to generate bounding boxes
from textual descriptions. Although the evaluation approach is suitable to test spatial grounding, they focus on implicit
spatial relations, whereas our focus is on explicit relations. Thus, the proposed datasets are not suitable for our analysis.

With the objective of evaluating both object scales and spatial relations, a recent work provides new unified datasets
[Liu et al., 2022a]. As the objective of such work is to evaluate whether VLMs learn more spatial commonsense than
LMs, the datasets are purely textual, so they do not provide any means to ground spatial relations (they assume the
grounding occurs in a previous training process) and hence, they are not useful for our work. Interestingly, authors find
that VLMs, and more concretely text-to-image systems, perform much better than text-only LMs.

There are other ways to test the spatial inference and reasoning capabilities of models, though. CLEVR was one of the
pioneering works on testing compositional language and elementary visual reasoning [Johnson et al., 2017]. Using 3D
rendered images of simple objects such as spheres, cones and cubes, different questions are generated automatically. A
model has to process the image and the question to provide an answer. Although CLEVR can be used to test spatial
grounding, it has two major drawbacks for the work presented in this paper: i) questions not only cover spatial grounding
but some other concepts such as compositional language and attribute identification, and ii) spatial relations are limited
to four, i.e. left, right, behind and in front. The natural extension of CLEVR is GQA [Hudson and Manning, 2019],
which shares similar ideas but it is built on natural images. Although spatial grounding is very important for this task,
compositional language is also evaluated. As both dimensions appear together, we believe this dataset is not the best
option for our purposes.

In the text-only scenario, SpartQA provides another synthetic question-answering dataset (there is also a subset
annotated by humans). Given a textual story (a spatial description of a scene using explicit relations), a model has to
answer some spatial questions about that scene. The task is specially focused on spatial reasoning capabilities, such as
transitivity, and it does not provide any means to ground spatial relations, as its target is the reasoning process. Recently,
similar datasets haven been proposed as an extension and improvement of SpartQA [Mirzaee and Kordjamshidi, 2022].

In this paper, we use the recent Visual Spatial Reasoning (VSR) dataset [Liu et al., 2022b] to evaluate the spatial
grounding capabilities of text-only LMs. VSR has been designed to test spatial grounding capabilities, covering 65
different spatial relations over natural images collected from COCO [Lin et al., 2014]. Given an image, they provide a
caption which describes a spatial relation between two of the objects that appear in the image. That relation can be
real or fake, and that is precisely what the model has to infer, i.e. whether the caption is correct respect to the given
image. The dataset is fully annotated by humans. Given its features, we believe VSR is a good candidate to evaluate
spatial grounding in LMs and thus, we use it in our experiments. However, as text-only LMs cannot process images, we
propose a way to verbalize those images and run meaningful experiments.

2.2 Encoding spatial information

The most successful VLMs today are based on multimodal transformers [Tan and Bansal, 2019, Kim et al., 2021].
Although architectures may vary, the basic idea is to input the models with textual tokens and visual features. As
transformers are feed-forward networks, they do not consider the order of the inputs, and thus, positional encodings
are used to represent, for example, word order [Vaswani et al., 2017]. A similar idea is used also for visual features.
LXMERT [Tan and Bansal, 2019], for instance, uses the x0, y0, x1, x2,W,H coordinates of a bounding box for a
given visual feature, projects them linearly and sums it to the visual feature itself before inputting it to the transformer.
Alternatively, ViLT [Kim et al., 2021] does not use any object detector, but works directly on image patches. They use
positional embeddings to represent the order of those patches in the image, very similar to the positional embeddings of
textual tokens.

Regarding text-only LMs, to the best of our knowledge, [Patel and Pavlick, 2022] is the only work where scenes are
represented with textual tokens on which spatial grounding and reasoning can be performed. More concretely, they
propose to create grid-like structures with textual tokens inside the vocabulary of the LM. Their proposal is interesting,
but it is limited to toy experiments, since they can only represent small scenes and six spatial relations: left, right, up,
down, top and bottom. In contrast, with our approach we cover complex scenes depicted in natural images and 23
spatial relations (Table 1).

3 The VSR dataset

The VSR dataset contains natural image-text pairs to test the spatial grounding capabilities of machine learning models.
As can be seen in Figure 2, a textual description of an image is provided, where the spatial relation of two objects is
explicitly described. The spatial relation can be true or false. To solve the task properly, models have to be able to

3
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Caption: The person is ahead of the cow.
Label: True.

Caption: The cat is inside the toilet.
Label: False.

Figure 2: Two examples extracted from the VSR dataset.

ground around 65 different spatial relations, which are grouped in 7 categories: adjacency, directional, orientation,
projective, proximity, topological and unallocated.

The dataset has two splits: the random split and the zero-shot split. The later is designed such that train/dev/test sets
have no overlapping concepts and force models to learn concepts and the relations in a compositional way instead of
memorizing co-occurrence statistics of the two. However, it is smaller than the random split, which has a total of 10,119
examples. The zero-shot split has 6,430 image-text pairs in total.

According to the experiments performed in the VSR dataset by authors [Liu et al., 2022b], the best VLMs are far from
human performance. While humans obtain an accuracy of 95.4 for both splits, the best model for the random split, i.e
LXMERT [Tan and Bansal, 2019], is around 70.1 and it performs worse in the zero-shot split (63.0). This performance
gap between humans and VLMs shows that there is still much work to do to better ground spatial relations.

4 Learning to ground spatial relations in text-only LMs

In this paper, we propose to ground spatial relations in LMs introducing the concept of location tokens. These location
tokens use numbers that are already in the vocabulary of the LM. Thus, we can represent any scene, using four location
tokens to represent the position and the spatial extension of an object and combining them with the object name (and
any other object attribute). This textual scene representation allows LMs to relate spatial relations like left of with
specific arrangement of location tokens, providing a way to ground those relations.

To test our hypothesis, we verbalize the VSR dataset and use it for training and evaluation. As Figure 1 shows, we
approach the problem stated in VSR in the following way: (i) we obtain textual scene descriptions using an object
detector, (ii) we include in that description the location tokens derived from the object bounding boxes, (iii) we
concatenate the caption and the textual scene description and input it to the LM, (iv) we fine-tune the LM on that input
for binary classification. We also offer the possibility to previously train the LM in our Synthetic Spatial Training
Dataset.

4.1 Textual scene descriptions

Given that VSR is a visio-linguistic dataset, the scene is defined by an image. We convert that scene to a textual
description using a state-of-the-art object detector, VinVL [Zhang et al., 2021], which given an image, produces a list of
objects with their name, attributes and bounding boxes. More concretely, an object detected by VinVL is represented as
O = {name, attr1, . . . , attrn, BB}, where BB ∈ R4 are the x0, y0,W,H coordinates of the bounding box.

To convert those BBs to location tokens, we follow this procedure (Figure 3): (i) normalize the image’s width and
height in the [0, 1] range, (ii) divide the image in a regular grid of size (G × G), and (iii) find the grid cells for the
BB coordinates (x0, y0, x1, y1) which we call (x̂0, ŷ0, x̂1, ŷ1), i.e. discrete coordinates. Those discrete coordinates
(after tokenization of the corresponding strings) are the location tokens. As a result, for every object detected, we get a
sequence of four location tokens or discrete coordinates. Thus, our textual scene description Descr(S) is a sequence of
textual objects {O0, O1, . . . ON}, where each object is a string of the form: Oi = {x̂i

0, ŷ
i
0, x̂

i
1, ŷ

i
1, namei}. Notice that

VinVL also returns a list of attributes for every object. Unless stated otherwise, we discard those attributes in the textual
scene description.
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Grid pos 
(0, 0)

Grid pos 
(3, 2)

Normalize 
W, H

Impose 
4x4 grid

Figure 3: An illustrative example of how BB coordinates are converted to location tokens. In this case, with a grid size
of 4× 4, the location tokens for cat (red box) are 0 0 3 2.

Category Spatial Relations

Object position in the image top left, bottom left, left, top right,
bottom right, right, top, bottom, center

Object size comparison wider, narrower, taller, shorter, larger, smaller

Two object positional relations surrounding, inside, left of, above, right of,
below, overlapping, separated

Table 1: The 23 relations in our Synthetic Spatial Training Dataset organized in three categories.

For the VSR task, we produce textual descriptions for all the images, concatenate them with the captions provided in the
dataset and input it to the LM. Using positional embeddings, the LM can learn to interpret properly the order of location
tokens and their correspondence with the object names. For example, for the image in Figure 3, the textual description
of the object cat is: 0 0 3 2 cat. Assuming that our grid size G = 4, this is interpreted as having a cat covering the left
part of the image. We would do similarly for all the objects of the image to build our textual scene description.

Notice that for VSR, the textual scene descriptions are derived from images. But in the general case, we could derive
them from other modalities like graphs or text. For instance, given a natural textual description of a scene (e.g. "a cat is
on top of a table"), textual scene descriptions with location tokens could be obtained. However, as we could not find any
suitable dataset for those cases, we leave them out of the scope of this paper (see Section 7).

4.2 The Synthetic Spatial Training Dataset

Multimodal training datasets with images and corresponding textual descriptions that include explicit spatial relations
tend to be small. As a second ingredient of our approach we automatically construct a synthetic dataset with spatial
relations named Synthetic Spatial Training Dataset (SSTD), which is used to teach LMs on how to relate location
tokens and explicit spatial descriptions. Given an image in an existing dataset, an object detector is used to produce
textual descriptions with object labels and location tokens. Given two objects and their bounding boxes, simple rules
and templates are used to generate a positive or negative question about the spatial relation between the two objects
(or alternatively, about a single object). Figure 4 shows such a generated example. The most important advantages of
SSTD are: i) it can generate thousands and thousands of different examples, ii) it involves light human labour2, iii) it
can be easily extended to support new spatial relations, and iv) it can be used as a visio-linguistic or text-only dataset.

To build SSTD, we use the 2014 version of the COCO dataset [Lin et al., 2014]. We obtain SSTD training examples
from the train set and validation examples from the validation set. Instead of using human annotated object detections,
we use automatic VinVL detections, because the vocabulary size of VinVL is much larger than COCO (1848 classes
against 80). In COCO, for example, we have the class "person", while VinVL detects more specific classes like
"woman", "man", "boy" or "girl", among others, which add more diversity to SSTD. Although VinVL introduces errors
in the object detection label or bounding box, this is not important for the text-only case, as we do not need matching
visual and textual representations of the image. We are just interested in generating correct spatial relations for the
detected object bounding boxes and labels.

In order to generate SSTD, we manually define a list of interesting and unambiguous spatial relations based on previous
work [Johnson et al., 2018]. For example, given two bounding boxes, deciding whether an object is left of another

2We spent ∼ 5 hours of work for our specific implementation including rules and templates.
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object, is unambiguous. However, using only those bounding boxes, it is not possible to decide whether the objects
are close to each other. Even though both BBs may be close, one of the objects can actually be very far in the depth
dimension, so we need the context of the image to decide about the spatial relation. In that sense, notice that we did
not have to adapt SSTD relations to VSR, just focus on what kind of relations we could unambiguously derive from
bounding boxes. In consequence, SSTD should be useful for other tasks involving spatial grounding, not only VSR. In
Table 1 we provide all the implemented relations and the category they belong to. All of them can be implemented
following some simple rules based on object bounding boxes (more details in Appendix A). This is the process we
follow to generate an example for SSTD:

1. We take an image and check the number of detected objects. As we implement one- or two-object relations,
depending on the number of detections, we randomly select among the three categories of Table 1 (i.e. if
we have only one detection, we select "object position in the image"). If we have two or more objects, we
prioritize two-object relations (i.e, we assign 70% of probability to two-object relations and 30% to one-object
relations). Given the category, we randomly sample the required objects (one or two depending on the relation)
from all the detections.

2. We randomly decide between generating an affirmative or negative question. This way, we make sure that
yes and no answers will be balanced. Using hand-designed verbalization templates, we generate the question
corresponding to the spatial relation selected in the previous step (templates are provided in Appendix A).

3. We verbalize the scene in the image. We provide two kinds of verbalizations: i) generate the textual
scene description as the concatenation of all objects detected by VinVL in the image, where each object is
accompanied by its location; ii) use only the concatenation of object names, excluding location tokens. Notice
that other image verbalization approaches could easily be added, such as captions3.

4. A SSTD example is comprised by a question, a textual scene description and an answer. The image is discarded
in the text-only version.

Following this procedure, we can generate many examples from each image. In that sense, SSTD does not have a
fixed size: users can decide how many examples they want to extract from each image. In our case, during the spatial
training phase of our models, we decide to produce random examples from the same images (COCO train set) in each
epoch. That means that the models see an estimate of num_epochs× 80K examples during the training process, where
80K corresponds to the number of images for COCO train set. Finally, as VSR is also based on COCO, to avoid any
contamination, we do not include in the train set of SSTD the images that are already in VSR dev or test splits.

5 Experiments and results

We use the random split of the VSR dataset for the experiments, given its bigger size. For all the fine-tuning processes
described, we train the models in the train set and select the best performing model in the validation set. That model
is then evaluated in the test set. Following the recommendations of VSR authors, we provide the average results of
three different runs, with the observed standard deviation. The hyperparameters of different models and GPU usage are
specified in Appendix B.

5.1 The influence of the location tokens and spatial training

We want to assess the importance of two fundamental factors of our approach: i) the use of location tokens for LMs,
and ii) the benefits of a spatial training phase using SSTD to better leverage those location tokens. For that purpose, we
use BERT-base [Devlin et al., 2018] as our LM and train it in different ways, testing different combinations of using
(or not) location tokens and previously training (or not) spatially with SSTD. We add a classification head on top of
the [CLS] embedding (t(nl)

1 , where nl is the index of the top layer) for binary classification. We define the head as a
multilayer perceptron (MLP) of one hidden layer. We define our MLP in Eq. 1.

h = LayerNorm(GELU(Wht
(nl)
1 + bh))

ŷ = Sigmoid(Wŷh+ bŷ)
(1)

In order to develop the spatial training phase using SSTD, we randomly built a validation set for SSTD (comprising
40,504 examples) and chose the model which performs best as the one to be used in the VSR experiments.

3We consider that for our experiments, those alternative verbalization approaches are not interesting, since we want to test how
explicit spatial relations are grounded to location tokens.
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Q: Is man right of horse?
Descr: 0 3 16 29 horse 14 7 26 31 man 22 6 
31 31 baby 21 5 28 10 tree 0 5 23 31 
building…
A: Yes.

Figure 4: An example of the SSTD validation set generated from the image, which includes question (Q), description
(Descr) and answer (A), but not the image itself. Description partially shown, as it comprises 44 objects. Location
tokens are discrete grid coordinates of the BB, e.g. (0, 3) and (16, 29) for horse.

Model Locations SSTD
BERT-base No 76.96
BERT-base Yes 94.49

Table 2: Results (accuracy) on the validation
set of our synthetic SSTD dataset.

Model Locations VSR acc

Language Models BERT-base No 62.11±0.88

BERT-base Yes 61.60±0.92

Spatially trained
Language Models

BERT-base No 61.83±0.28

BERT-base Yes 73.69±0.88

Table 3: Test results on VSR as mean accuracy with standard deviation.
First block for language models with and without location tokens.
Second block for spatially trained language models (using SSTD)
which are then fine-tuned on the VSR training set.

Table 3 shows the obtained VSR test results for the mentioned combinations. The first block shows the performance of
BERT-base fine-tuned on the VSR training set, with no significant differences between using or not location tokens.
However, we do observe important differences in the second block, where both BERT-base models are previously
trained on our Synthetic Spatial Training Dataset (SSTD) and only the model which uses location tokens improves over
the previous models. The improvement with the use of spatial training and locations with respect to the other three
options is notable, with ∼ 12 absolute point improvement. The results show that location tokens are a good way to
encode spatial information for language grounding, and that the spatial training step using SSTD is crucial to make the
model learn how that grounding should be done.

On the other hand, Table 2 shows the results obtained in the validation split of SSTD. Although SSTD is used for spatial
training and the obtained results are not the focus of this paper, it is interesting to see how using location tokens, the
LM can achieve 94.49 of accuracy, whereas without location tokens, it cannot reach an accuracy of 77. The gap is of
around 17 absolute points, which, once again, shows the importance of location tokens.
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Model Parameters VSR acc

Multimodal
Systems

CLIP (w/ prompting) 632M 55.2±1.4

VisualBert† 110M 57.4±0.9

ViLT 87.4M 69.3±0.9

LXMERT 240M 70.1±0.9

Our
Spatially trained

Language Models

BERT-base 110M 73.69±0.88

BERT-large 336M 74.44±0.73
T5-base 220M 73.09±0.59

T5-large 770M 74.49±0.36
T5-3B 3B 74.52±0.25

Table 4: Test results on VSR as mean accuracy with standard deviation. First block for multimodal systems, see text for
references. † for models with no spatial information. Second block for our spatially trained language models.

5.2 Comparison with the state of the art

In this section we compare our results to the current state-of-the-art models for VSR, and, in addition, we explore
whether scaling up LMs brings some extra performance. For that purpose, we use BERT-large as our LM (also adding a
binary classification head as in Eq. 1), but we also explore the T5 family of encoder-decoder models [Raffel et al., 2020].
We include T5 models because the larger size of some models and in order to explore encoder-decoder models, as
opposed to encoder-only models such as BERT. To use T5, we add text prefixes before each sentence, such as ’caption:’
for the VSR caption and ’context:’ for the textual scene description. This is done to mimic the input prompts used
during the pretraining process of the T5 model, and help the LM to better leverage what it has learnt before. As T5 is a
generative LM, it produces answers in an open-ended text generation manner. We select the answer (yes or no) with
maximum probability. Thus we do not use any classifier head in this case.

Table 4 shows the obtained results for those experiments4. The best VLM, i.e. LXMERT, obtains an accuracy of 70.1.
All our spatially trained LMs surpass that accuracy significantly, which is notable as our models only access bounding
box labels and locations, losing potentially important information in the image. The best models are our three largest
LMs, with over 74 accuracy, 4 absolute points ahead of LXMERT.

From those results, we can conclude that location tokens and the spatial training phase are good strategies to ground
spatial relations in LMs. More importantly, LMs can handle spatial information, which opens the door for applications
such as document layout tasks or textual spatial reasoning, for example. However, if we look at the benefits of scaling
up the LMs, our experiments show diminishing returns for this specific task. It is true that our best model is a T5 of
3B parameters, however the difference with T5-large or BERT-large is quite small. Notice, though, that we did not
perform any extensive hyperparameter tuning, so it could be the case that those larger LMs could actually perform
better. Regarding sizes, we would like to note that we use the decoder part of T5 to generate one of Yes or No, and as
such it would seem that the decoder is oversized.

6 Analysis of the results

In this section we analyse the results of individual spatial relations, we compare our systems with a rule-based baseline
and a VLM, and we finally analyse the use of object attributes.

6.1 Analysis per spatial relation

As the 65 relations in VSR are of different nature, we compare the performance of our spatially trained LMs relation by
relation. The objective is to see how spatial training and scale affect the performance. Figure 5 shows the accuracy of
three LMs per relation. The selected models are BERT-base with location tokens but without any spatial training, the
same BERT-base with spatial training and BERT-large, also with location tokens and spatial training. We only visualize
the relations that appear 15 times or more in the test set.

In general, spatial training helps in almost all relations, with some exceptions. For instance, an orientation relation
(facing away) and an adjacency relation (at the edge of ). This could be expected, as SSTD does not cover those
relations, because orientation cannot be inferred from BB information, and the object detector in use (VinVL) does not

4The results of VLMs are directly extracted from [Liu et al., 2022b].
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Figure 5: Comparison of three BERT models in terms of accuracy per spatial relation. Relations are ordered by
frequency in descending order. For readability, we only show the relations that appear more than 15 times in the test set.
All three models use location tokens. The "st" acronym in the model name indicates that the model has been spatially
trained before the fine-tuning on VSR. Best viewed in color.

codify it in the attributes either. Orientation seems to be also difficult for VLMs [Liu et al., 2022b], so more work is
needed in this regard.

There are also positive effects which show the generalization capabilities of the LMs to some extent. BBs do not provide
any 3D information, so we did not include relations like behind, in front of and at the back of in SSTD, but spatial
training performs very well for those relations. One of our hypothesis is that SSTD does include size relations (wider,
smaller and so on), and thus the spatially trained models learn to combine BB information with typical size relations to
infer depth (e.g. as persons are larger than cats, if a particular person is smaller than a cat, it has to be farther in the
scene). We plan to further investigate those cases, since they provide hints of how spatially trained LMs can leverage
location tokens to generalize to spatial relations that cannot be described unambiguously with arithmetic rules. We
provide a preliminary qualitative analysis in Appendix C.

We also observe in Figure 5 that, in general, the performance for VSR relations covered in SSTD (at the right side of, at
the left side of, on top of, above and so on) improves significantly. Knowledge transfer for those relations was expected,
as they are semantically very similar to some SSTD relations. However, in one case, beneath, which is tightly related to
the SSTD relation below, spatially trained BERT-base does not outperform BERT-base, but BERT-large does (+12
absolute points).

To add more context to this analysis, Table 5 provides the number of VSR relations per category, alongside the coverage
in SSTD and the performance difference between a BERT-base model with and without spatial training (both with
location tokens). Overall, SSTD covers only 17 out of the 65 relations in VSR, but there are some relations in SSTD
which can be helpful for some other relations in VSR. For example, the VSR relation detached to is related to the SSTD
relation overlapping. Depending on the image, overlapping BBs can be detached objects, but in general, BBs that do
not overlap will be detached. Looking at the performance difference (3rd column of Table 5), we can see that spatial
training is beneficial for all the categories, except for topological, where the difference is very small in any case. The
unallocated category has an impressive performance gain (+56.8), but it is not very significant since there are only 51
examples in the test set. In general, we can say that those categories that are better represented in SSTD, consistently
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VSR category VSR Relations In SSTD Perf. gap
Adjacency 10 2 +4.7
Directional 11 2 +2.9
Orientation 4 0 +9.1
Projective 12 8 +14.4
Proximity 5 0 +1.1

Topological 18 5 -1.2
Unallocated 5 0 +56.8

Table 5: For every category in VSR, we show how many relations there are. In the second column, we show how many
relations are already covered in SSTD. In the last column, the average performance difference between a spatially
trained BERT-base against a BERT-base without spatial training is shown.

improve in VSR. That is the case of projective (+14.4), adjacency (+4.7) and directional (+2.9). In that sense, the
performance gain of 9.1 absolute points for orientation relations is quite surprising.

Finally, in terms of LM size, the differences between BERT-base and BERT-large are irregular. In general, BERT-large
performs better, but there are some cases where BERT-base outperforms it. We do not observe any remarkable behavior.

6.2 Comparison with a rule-based baseline

An interesting question that arises from our results is whether our spatially trained LMs learn more than the heuristic
spatial rules represented in SSTD. To answer that question, we implemented a rule-based baseline, using the same
spatial rules of SSTD to solve the VSR dataset (implementation details can be found at Appendix D). We found that
around 38% of test instances could be solved using our spatial rules. However, due to caption-context object matching
failures, only 25% of the instances are actually solved using rules. The obtained accuracy for those instances is 60.7,
clearly below the performance of our spatially trained LMs. Indeed, if we solve randomly all the instances that cannot
be solved by rules (around 75% of the test set), we obtain an overall accuracy of 52.4, whereas our best spatially trained
LM has an accuracy of 74.5.

Figure 6 provides a detailed comparison between our rule-based baseline and the spatially trained BERT-large model
for VSR test. As can be seen, for all those relations that can be solved using bounding boxes and heuristic rules, the
spatially trained LM clearly outperforms the rule-based baseline for all the relations except three: within and around,
where both approaches have the same performance, and into, where the rule-based baseline obtains better results (notice,
though, that there are only 6 instances for that relation in VSR test, so the results are not very representative). From
those results we can conclude that our text-only LMs learn more than the information encoded in the spatial rules of
SSTD.

6.3 Comparison with a VLM

Even though it is not the main focus of the paper, it is also interesting to see how our spatially trained LMs compare to
VLMs. For that analysis, we compare the results of our spatially trained BERT-large and LXMERT for every relation in
VSR test.

Figure 7 shows the accuracy obtained by both models, grouped by categories. As can be observed, there are no important
differences, except for the unallocated category, where BERT-large significantly outperforms LXMERT (92 vs 68).
However, if we look at the performance relation by relation, there are interesting differences. In Figure 8, we show
the accuracy obtained with both models for those relations where the difference is bigger than 4 absolute points (we
consider that difference being significant, since it is approximately the overall difference of both models for VSR test).
As can be seen, BERT-large outperforms LXMERT for the relations in front of, at the left side of, in, far away from,
inside, left of, far from, close to, at the back of and over. Some relations only require two-dimensional information (at
the left side of, left of, over) and thus, the better performance of BERT-large could be expected. However, it is curious
to see that BERT-large is better than LXMERT for relations like in front of, in, far away from, inside, far from, close to
and at the back of. Those relations should benefit from visual information, but it seems LXMERT cannot leverage that
information properly. On the other hand, LXMERT only outperforms BERT-large significantly for the relations on top
of and in the middle of. In the case of on top of, the difference is of 4 absolute points and we do not see any clear reason
for that difference. For the relation in the middle of, BERT-large is specially bad, even worse than BERT-base, which is
on par with LXMERT. We believe this behaviour is more related to the low number of instances for that relation in VSR
test (only 15).
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Figure 6: Comparison of our spatially trained BERT-large model and the rule-based baseline for the VSR test relations
that can be solved using bounding boxes and heuristic rules. Best viewed in color.
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relation

ac
cu

ra
cy

0.00

0.25

0.50

0.75

1.00

in 
fro

nt 
of

on
 to

p o
f

at 
the

 le
ft s

ide
 of in

far
 aw

ay
 fro

m
ins

ide lef
t o

f

far
 fro

m

clo
se

 to

at 
the

 ba
ck

 of ov
er

in 
the

 m
idd

le 
of

BERT-large st LXMERT

Figure 8: Comparison of our spatially trained BERT-large
model and LXMERT for the VSR test relations, where the
difference between both models is bigger than 4 absolute
points. Best viewed in color.

6.4 Analysis of the use of object attributes

VinVL returns not only objects but also their attributes like colors, poses (open hand, standing boy), sizes, textures
(striped jacket), materials (brick wall) and so on. We modified the spatial training phase to include the attributes in the
textual scene description and trained a BERT-base model with the same hyperparameters as in Section 5.1. Afterwards,
we fine-tune the best SSTD validation model on the VSR training set. Again, we add the attributes in the textual scene
descriptions. The VSR test accuracy is of 74.14, which is inside the standard deviation of the BERT-base models
shown in Table 3. We conclude that using object attributes as extracted by VinVL is not beneficial for this specific task,
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although our analysis in the previous section showed that additional attributes non covered by VinVL like orientation or
depth information, if extracted, could be of use.

7 Conclusions and future work

In this paper, we have presented a novel way to ground spatial relations in text-only language models through location
tokens. To make LMs learn the grounding between spatial relations and location tokens, we also propose the Synthetic
Spatial Training Dataset, a textual dataset with unambiguous spatial relations between objects automatically derived
from existing images. We run experiments on a verbalized version of the Visual Spatial Reasoning dataset, where
spatial grounding can be tested, showing that our approach to ground spatial relations in LMs is effective. Indeed, when
compared with VLMs, we obtain even better results, which is another important indication that our spatial grounding
approach is working.

Furthermore, scaling up our LMs we obtain the new state-of-the-art in VSR. However, we observe diminishing returns,
which may suggest that to ground better those spatial relations, scale is not determinant. That opens the door for other
techniques and approaches.

In the future, we want to deepen on spatial training, including categories like orientation and depth, for example. We
also want to transition to text-only spatial reasoning tasks like SpartQA [Mirzaee et al., 2021] and RESQ [Mirzaee
and Kordjamshidi, 2022], where we plan to transform the natural language scene descriptions with explicit spatial
relations provided in those tasks, to our textual scene descriptions based on location tokens. We want to see whether
those grounded representations do actually improve the spatial reasoning capabilities of LMs.
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A SSTD Implementation Details

We will present here the rules and heuristics followed to derive spatial relations from bounding boxes, grouped by
category (see Table 1). We also present the templates we use to generate automatic questions for every case. We assume
all BB coordinates are normalized between [0, 1].

Object position in the image We first define a region for each of top left, top right, bottom left and bottom right.
For example, [0, 0, 0.5, 0.5] corresponds to top left. If the object BB is inscribed in one of those regions, we return that
spatial relation. Otherwise, we check whether the object is in the following regions: top, bottom, left or right. An object
is in the left region, for instance, if the object bounding box is inscribed in the [0, 0, 0.5, 1] region. In all the other cases,
the object is in the center. Given an object obj and a region reg, the template we use for question generation is: "is
⟨obj⟩ in ⟨reg⟩ region?"

Object size comparison Assuming two objects obj1 and obj2 and their bounding boxes, we calculate the functions
width(obj), tall(obj) and area(obj) for each object, using BB coordinates. If width(obj1) > width(obj2), obj1 is
wider than obj2 (and obj2 is narrower than obj1). We apply analogous rules for taller/shorter using the length(obj)
function and larger/smaller using the area(obj) function. Given two objects obj1, obj2 and a size comparison relation
rel, the template we use for question generation is: "is ⟨obj1⟩ ⟨rel⟩ than ⟨obj2⟩?"

Two object positional relations Assuming two objects obj1 and obj2 and their bounding boxes, if the BB of obj1
is inscribed in the BB of obj2, obj1 is inside obj2, and obj2 is surrounding obj1. For the relations left of, right of,
above and below, we use the angle between the centers of both objects. If the center of obj2 is between the angles
[−3

4 π, 3
4π], we say obj2 is left of obj1. Similarly, [−3

4 π, −1
4 π] corresponds to above, [−1

4 π, 1
4π] corresponds to right of

and [ 14π,
3
4π] corresponds to below. Finally, using the Intersection over Union (IoU) of both BBs, we say that obj1 and

obj2 are separated if their IoU is 0, and overlapping if IoU > 0. Given two objects obj1, obj2 and a positional relation
rel, the template we use for question generation is: "is ⟨obj1⟩ ⟨rel⟩ ⟨obj2⟩?". In the case of the relation separated we
use the following template: "are ⟨obj1⟩ and ⟨obj2⟩ separated?".

B Hyperparameters and GPU Usage

We always use a grid size G = 32 all over the experiments. For experiments with BERT-base, both for the spatial
training and VSR fine-tuning, we train the models for 20K steps, with AdamW optimizer, a batch size of 56, a maximum
learning rate of 5× 10−5, a warmup phase of 2K steps and cosine scheduler for learning rate decay. We use a single
NVIDIA A30 GPU to perform all the experiments. Each of the experiments need around 5 hours.

We train BERT-large models for 20K steps, with a batch size of 32, maximum learning rate of 10−5, AdamW optimizer,
warmup phase of 2K steps and cosine scheduler. Using a NVIDIA A100 GPU, we need around 4 hours for the spatial
training and additional 5 hours for fine-tuning on VSR. In the case of T5 we train the models spatially for 88K steps
(T5-3B is trained for 20K steps due to its size) and fine-tune on VSR for 20K. We use a batch size of 32, AdamW
optimizer, maximum learning rate of 5 × 10−5, a warmup phase of 2K steps and cosine scheduler for learning rate
decay. Regarding the T5 family: T5-base is trained on 1 NVIDIA A30 GPU: for spatial training it needs ∼ 20 hours
and for VSR fine-tuning ∼ 3.5 hours. T5-large is trained on 1 NVIDIA A100 GPU: it needs 1 day and ∼ 4 hours for
spatial training, whereas VSR fine-tuning takes ∼ 3.5 hours. Finally, T5-3B is also trained on a single NVIDIA A100
GPU: spatial training ∼ 20 hours (20K steps) and VSR fine-tuning ∼ 15 hours.

No hyperparameter search was performed.

C Qualitative analysis of generalization capabilities

We compare some examples of two text-only LMs: the BERT-base model with location tokens trained only on VSR
(BERT for short) and the BERT-base model with location tokens trained on SSTD and fine-tuned on VSR (st-BERT
for short). We want to see the effects of the spatial training on SSTD to better generalize in VSR. For that purpose,
we focus on two relations that cannot be represented in SSTD, since they cannot be unambiguously defined with BB
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Figure 9: Comparison of the predictions of two BERT models for VSR test examples. The spatially trained BERT
model predicts correctly the labels, whereas the BERT which has been trained only on VSR does not.

information and involve 3D arrangement of objects: behind and in front of. For behind, the accuracy of BERT is 0.6
and the accuracy of st-BERT is 0.75, calculated over 136 examples. For in front of, BERT scores 0.58 and st-BERT 0.61
(116 examples). Those results show that SSTD training helps even when the spatial relations are not represented in the
dataset. Figure 9 offers some intuition of why this might be happening. For the first example, we see that the bus is
much smaller than the bike. As SSTD includes relative size relations, we think the model has learned that buses are
typically bigger than bikes. Thus while training on VSR, the model might be able to leverage that information and
relate size differences with 3D arrangements of objects. A similar reasoning can be applied to the second (motorcycle
and dog) and the last examples (bench and potted plant), but for the in front of relation. For the third example (bus and
book), it seems st-BERT could leverage the fact that the book can only be visible if it is in front of the bus, given the
arrangement of the bus BB. However, BERT could not predict the spatial relation correctly.

We also analyse two other relations that are not in SSTD, but are also related to relative object sizes: next to and far from.
For next to, BERT obtains 0.56 and st-BERT 0.73 (over 41 examples). For far from BERT scores 0.83 and st-BERT 0.91
(over 23 examples). Notice that the relation far away from is very similar to far from and st-BERT clearly outperforms
BERT also (0.88 vs 0.73 over 49 examples). For the first example (pizza and chair), given the small size of the chair, it
can be inferred that it is far in the depth dimension. It seems st-BERT can leverage this information, whereas BERT
cannot. For the second example (refrigerator and cat), both BBs overlap and it seems st-BERT infers that situation
cannot lead to two objects far away given the typical sizes of those objects. The third example (backpack and cat) shows
a case where both BBs are slightly overlapping. Again, the typical sizes of both objects could lead st-BERT to infer that
they are actually next to each other. Finally, for the fourth example we see that the hot dog BB is inside the bowl BB.
st-BERT infers that this is not the typical arrangement for next to, but BERT cannot do that, even though it has the same
textual scene representation.
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VSR relation SSTD Relations
at the right side of right of
at the left side of left of

around surrounding
into inside

on top of above
beneath below
left of left of

right of right of
under below
below below
above above
over above

contains surrounding
within inside

surrounding surrounding
inside inside

outside separated

Table 6: The mapping between VSR relations and SSTD relations.

D Implementation details of the rule-based baseline

To implement the rule-based baseline, we first defined manually a mapping between VSR relations and SSTD relations.
As shown in Section 6.1, only 17 VSR relations out of 65 can be mapped to SSTD relations. That mapping is shown in
Table 6. Given a VSR test instance, we check the spatial relation (provided in the annotations of the dataset) and if it
can be mapped to a SSTD relation, we perform the following steps: a) from the VSR caption, we retrieve the subject
and object using string manipulation; b) we find the same subject and object in the textual scene description, using
string matching; c) if both subject and object are found, we retrieve their bounding boxes and apply SSTD rules to
solve the instance; d) if any of subject or object are not found, or the relation cannot be mapped to a SSTD relation, we
choose the answer randomly (50% of probability).
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Figure 10: Comparison of the predictions of two BERT models for VSR test examples. The spatially trained BERT
model predicts correctly the labels, whereas the BERT which has been trained only on VSR does not.
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Abstract

Existing work has observed that current text-to-
image systems do not accurately reflect explicit
spatial relations between objects such as left
of or below. We hypothesize that this is be-
cause explicit spatial relations rarely appear in
the image captions used to train these models.
We propose an automatic method that, given
existing images, generates synthetic captions
that contain 14 explicit spatial relations. We
introduce the Spatial Relation for Generation
(SR4G) dataset, which contains 9.9 millions
image-caption pairs for training, and more than
60 thousand captions for evaluation. In or-
der to test generalization we also provide an
unseen split, where the set of objects in the
train and test captions are disjoint. SR4G is
the first dataset that can be used to spatially
fine-tune text-to-image systems. We show that
fine-tuning two different Stable Diffusion mod-
els (denoted as SDSR4G) yields up to 9 points
improvements in the VISOR metric. The im-
provement holds in the unseen split, showing
that SDSR4G is able to generalize to unseen
objects. SDSR4G improves the state-of-the-art
with fewer parameters, and avoids complex ar-
chitectures. Our analysis shows that improve-
ment is consistent for all relations. The dataset
and the code are publicly available.1

1 Introduction

Text-to-image generators such as Midjourney, Sta-
ble Diffusion (Rombach et al., 2022) and Dalle-3
(Betker et al., 2023) have recently made rapid ad-
vances and generated a lot of interest. However,
those systems are still far from being perfect and
show some important weaknesses. For instance, as
observed by (Gokhale et al., 2023) and (Cho et al.,
2023b) among others, current text-to-image gener-
ators do not represent well explicit spatial relations
like left of or below, which limits their capabilities

1Url: https://github.com/salanueva/sr4g

Figure 1: Fine-tuning Stable Diffusion on our SR4G
dataset improves results significantly (two versions of
SD shown), surpassing the state of the art in spatial-
aware systems (see Section 4).

for important applications like text-based image
editing (Kawar et al., 2023).

We hypothesize that the poor performance for
explicit spatial relations is due to the lack of such
relations in the datasets used to train those models.
To support our hypothesis we analysed the LAION-
2B dataset (Schuhmann et al., 2022), which has
been used to train the state-of-the-art open source
model Stable Diffusion. LAION-2B takes the cap-
tions from alt-text fields of images on the web. We
automatically searched for explicit spatial relations
(left, right, below and so on) and found that only
0.72% of cations contain the target words. Further-
more, 64.1% of these relations are left and right,
which cannot be captured by image generators, as
random horizontal flips are applied to images dur-
ing training.

Motivated by the lack of captions with spatial
relations, we focus on the training data to improve
current end-to-end diffusion models; this is com-
plementary to proposed architectural modifications
on the system itself (Cho et al., 2023b; Feng et al.,
2023). More concretely, we propose an approach



to automatically generate synthetic captions which
contain explicit spatial relations with paired real im-
ages. Leveraging the object annotations in COCO
(Lin et al., 2014) and heuristic rules to infer the
spatial relation between two bounding boxes, we
build a dataset of real images paired with synthetic
captions, called Spatial Relations for Generation
(SR4G).

We use SR4G to fine-tune two Stable Diffusion
models, assuming that exposure to image-caption
pairs with explicit spatial relations will enhance
the capabilities of the models to represent those
relations. To evaluate our fine-tuned models and
compare to the unmodified base models, we use the
recently proposed VISOR metric (Gokhale et al.,
2023), which we extend to support more spatial
relations.

The contributions of this paper are the follow-
ing: (1) We release SR4G, the first benchmark
that allows to fine-tune, develop and evaluate the
spatial understanding capabilities of text-to-image
models for 14 explicit relations; (2) Our experi-
ments show that fine-tuning Stable Diffusion on
SR4G improves the understanding of spatial rela-
tions and provides more accurate images; (3) The
improvement holds even when tested on unseen
objects, showing that the models are able to learn
the relations, generalizing to unseen objects; (4)
The results exceed the state-of-the-art in spatial
understanding for image generation (Cho et al.,
2023b; Feng et al., 2023) with fewer parameters
and avoiding complex architectures or Large Lan-
guage Models.

2 Related Work

Many text-to-image systems have been proposed
in the last few years. In general, we can distinguish
between those based on auto-regressive transformer
architectures, such as the original Dall-E (Ramesh
et al., 2021), the multi-task system OFA (Wang
et al., 2022) or CogView2 (Ding et al., 2022);
and those based on diffusion models, pioneered
by GLIDE (Nichol et al., 2022), which evolved
into current latent diffusion models such as Stable
Diffusion (Rombach et al., 2022) and Attend-and-
Excite (Chefer et al., 2023).

Although the results of text-to-image systems
keep improving, recent work has shown that their
performance for explicit spatial relations is low
(Gokhale et al., 2023; Cho et al., 2023b); the mod-
els struggle to correctly draw textual descriptions

like a cat on top of a table. To overcome these
limitations, VPGen (Cho et al., 2023b) and Layout-
GPT (Feng et al., 2023) propose pipeline systems,
combining Large Language Models to generate
layouts from textual prompts and layout-to-image
generators such as GLIGEN (Li et al., 2023). The
difference between both systems is that VPGen
fine-tunes Vicuna-13B (Chiang et al., 2023) to gen-
erate layouts from textual descriptions, whereas
LayoutGPT relies on Llama-2-7B (Touvron et al.,
2023) and in-context learning for the same pur-
pose.2

To avoid the use of complex and large pipeline
systems, (Yang et al., 2023) propose ReCo, an end-
to-end system which uses layout descriptions in the
input. In this paper, we also focus on end-to-end
systems, but we avoid inserting layout information
into the input, as this imposes a substantial burden
on users compared to simple text inputs.

To evaluate the performance of text-to-image
generators for explicit spatial relations, dedicated
datasets have been created, since commonly used
datasets like COCO (Lin et al., 2014), CC12M
(Changpinyo et al., 2021) or LAION (Schuhmann
et al., 2022), contain very few examples of explicit
spatial relations. For example, (Gokhale et al.,
2023) propose the SR2D dataset, composed of syn-
thetic captions created combining two objects in
the COCO object vocabulary and four explicit spa-
tial relations. SR2D only contains captions and it
is thus not amenable for training. Similarly (Feng
et al., 2023) published the Numerical and Spatial
Reasoning dataset (NSR-1K) which does include
caption-image pairs. The spatial part contains only
1021 image-caption pairs (738 for train and 283 for
test, no development) for 4 relations, insufficient
for accurate evaluation and too small for training.

Our paper proposes a new dataset with synthetic
captions and paired images which can be used
to train and evaluate spatial understanding of text-
to-image generation systems, containing 14 dif-
ferent spatial relations and including 9.9 million
image/caption pairs (Section 3). Finally, for eval-
uating the generated images, we follow (Gokhale
et al., 2023; Feng et al., 2023; Cho et al., 2023b)
and use an off-the-shelf object detector to extract
bounding boxes and compute the spatial relation
between detected objects.

2Originally they use LLMs from the OpenAI GPT family,
but they have released a publicly available Llama-2 based
variant of LayoutGPT, which we use in this work.



3 SR4G: A new synthetic dataset for
explicit spatial relation generation

Given the shortcomings of previous datasets, we
propose to generate meaningful synthetic captions
for real images, and use them to build the SR4G
dataset (Spatial Relations for Generation). We in-
crease the number of spatial relations used in previ-
ous work (Gokhale et al., 2023; Cho et al., 2023b;
Feng et al., 2023) including not only projective or
scale relations, but also topological ones. The full
list of unambiguous spatial relations we used is as
follows:
Projective: left of, right of, above and below.
Topological: overlapping, separated, surrounding
and inside.
Scale: taller, shorter, wider, narrower, larger and
smaller.

Our objective is to build a dataset for training,
development and evaluation. For training, we need
image-caption pairs, but for evaluation, captions
with spatial relations are enough, since, following
previous work (Gokhale et al., 2023; Cho et al.,
2023b), the outputs of the image generator are
not evaluated against real images. The evaluation
method is described in Section 3.4.

3.1 Captions for evaluation

We first generate a set of spatial triplets of the form
⟨subject, relation, object⟩. We build our initial set
of triplets using all pairwise combinations of the
80 objects in the vocabulary of COCO (Lin et al.,
2014), yielding 3, 160 object pairs, and combin-
ing each pair with all of our 14 spatial relations,
resulting in 88,480 spatial triplets.

However, some spatial triplets in the initial set
are not natural. For example, it is very difficult
to find natural images for triplets like ⟨skis, above,
toothbrush⟩ or ⟨truck, inside, cat⟩. We want to
remove those unnatural triplets from our dataset
to focus on triplets that appear in natural images.
Therefore, we identify all triplets that appear at
least once in the training split of the COCO dataset
and use that subset to generate our evaluation cap-
tions, which consists of 68.8% of the entire set of
triplets (60,836 triplets).

Using hand-designed templates to be as simple
as possible (Appendix A.1), we generate the final
evaluation captions from the set of spatial triplets
(Figure 4 shows some examples). Those captions
reflect only the spatial relations between two ob-
jects, avoiding to include any other textual details.

3.2 Image-caption pairs for training
For training, we need captions with explicit spatial
relations and real images in which those relations
are depicted. We use the COCO 2017 training
split to collect real images with object annotations
and define a methodology to generate first spatial
triplets from those images, and then textual cap-
tions derived from those triplets.

Given an image I and a list of n objects OI =
{o1, o2, . . . , on} belonging to I , the goal is to
generate a triplet with a valid spatial relation r
between two objects in OI : os and oo, where
s, o ∈ {1, . . . , n}. For each object oi, we know
its respective label li and bounding box (bbox)
bbi = {x0i , y0i , x1i , y1i }, that is, four coordinates
that define the position and size of oi in the image.

Therefore, tj = ⟨ls, r, lo⟩ is a triplet defined in
SR4G that is represented in I . We call this set of
valid triplets TI = {t1, . . . , tm}, where m is the
number of valid spatial relations in the given image
I . This implies that each relation r has to be linked
to a heuristic rule fr where, given the bboxes of
two objects, it determines whether a given triplet is
instantiated or not (see Eq. 1). We follow (Johnson
et al., 2018) and define fr functions, which rep-
resent unambiguous spatial relations between two
object bounding boxes (see Appendix A.2).

tj = ⟨ls, r, lo⟩ ∈ TI ←→ fr(bbs, bbo) (1)

We apply data augmentation strategies (random
crops and horizontal flips) to the original COCO
images in order to obtain an image I and its object
list OI . Then, we randomly select two objects
as os and oo, compute the list of valid relations
using our predefined fr functions, and randomly
select one of these relations, building the j-th valid
relation of I without computing the entire TI set:
tj = (ls, r, lo). Finally, we verbalize the obtained
triplet tj using the same hand-designed templates
as for the evaluation captions (Section 3.1).

3.3 Dataset splits
We build two different splits of SR4G, namely the
main and the unseen splits. The main split con-
sists of all the spatial triplets/captions of the SR4G
test set (see Section 3.1). The training instances
are generated on-the-fly without any restrictions on
the triplets, which means that the same triplet can
be in train, validation and test splits. For the un-
seen split, we randomly divide the COCO dataset’s



Splits Images
Unique Captions

I/C Pairs
Train Val Test

Main 103.4k 60.8k 2.5k 60.8k 9.9M
Unseen 83.6k 46.9k 2.5k 8.0k 4.8M

Table 1: SR4G dataset’s statistics. Images column
refers to the number of images used during training,
Unique triplets column represents the amount of unique
triplets, and I/C pairs refers to the number of unique
image/caption pairs that can be generated.

80 objects into training, validation and test sets of
|Otrain| = 45, |Oval| = 5 and |Otest| = 30 objects,
respectively. More specifically, during training we
just take objects from Otrain into account when
randomly selecting bboxes to dynamically build
spatial captions. For validation, as there are few
combinations that can be built with Oval, we se-
lect triplets that contain one of these 5 objects at
least once and do not contain any object that is set
aside for the test split. For testing purposes we
use triplets built by only using objects from Otest.
Table 1 shows the relevant numbers of our splits
(more details in Appendix A.3).

3.4 Evaluation metrics
To evaluate the performance of text-to-image sys-
tems for spatial relations, we use three evaluation
metrics proposed by (Gokhale et al., 2023):

Object Accuracy: Given a generated image I ′

and two object labels la and lb, object accuracy
measures whether both objects appear in I ′. We ob-
tain a list of objects for I ′, i.e., LI′ = {l1, . . . , ln},
by using an off-the-shelf open-vocabulary object
detector, OWL-ViT (Minderer et al., 2022). This
metric is useful for analyzing the object generation
capabilities of an image generator, as it does not
take the relation r into account.

OA(I, la, lb) =

{
1 if la, lb ∈ OI′

0 else
(2)

VISOR: Given a generated image I ′ and a spa-
tial triplet t = (la, r, lb), VISOR measures whether
both objects appear and if the spatial relation r is
valid between them. Function fr takes the bound-
ing boxes of both objects (bba and bbb) and com-
pares them to check if the triplet is valid. Bounding
boxes are provided by the object detector. VISOR
increases both when the model generates the re-
quested objects and when the ratio of correctly

generated relations increases, showing the ability
of the model in visualising spatial triplets.

VISOR(I, t) =





1 if la, lb ∈ LI′ ∧
fr(bba, bbb)

0 else

(3)

VISORCond: This is the proportion of correctly
generated spatial triplets, taking into account only
images in which both objects are generated.

Given that our contribution focuses on spatial
understanding, we focus on VISORCond, as it quan-
tifies the ability of the model to represent spatial
relations correctly without considering its object
generation capability. It is the most informative
measure, specially when comparing between sys-
tems which might have different object generation
abilities, as it isolates the understanding of spatial
relations. We thus use it as our main performance
metric in the experiments, although we also report
the other two metrics, while extending the number
of spatial relations from 4 to 14,

4 Experiments and Results

In this section we show that end-to-end models im-
prove their capability of depicting spatial relations
when they are fine-tuned with synthetic training
examples. Furthermore, we find that our fine-tuned
models SDSR4G generalize to unseen objects dur-
ing fine-tuning.

4.1 Experimental set-up

Models. We use Stable Diffusion (SD) as the base
model, as it shows the best performance on spatial
relation generation among publicly available end-
to-end models (Gokhale et al., 2023). We use two
different versions of Stable Diffusion: SD v1.4 and
SD v2.1, which generate images of 512x512 and
768x768 pixels, respectively.

Training. To fine-tune SD models on SR4G, we
use the original loss function proposed by (Rom-
bach et al., 2022), i.e., the mean square error over
latent noise representations. We fine-tune SD mod-
els for 100k training steps with an effective batch-
size of 64 instances, evaluating on the validation
split every 5k steps. After training is complete, we
select the checkpoint with the highest VISORCond

value on the validation split. Following (Gokhale
et al., 2023), we generate four images per spatial
relation in all of our evaluations for consistency.
More details can be found in Appendixes B and C.



Model VISORCond ↑ VISOR ↑ OA ↑
Main split

SD v1.4 60.9 17.6 29.0
SD v2.1 64.0 27.4 42.8
SDSR4G v1.4 69.0 26.8 38.9
SDSR4G v2.1 69.5 31.7 45.6

Unseen split

SD v1.4 60.1 17.3 28.7
SD v2.1 64.0 28.4 44.4
SDSR4G v1.4 68.9 23.7 34.4
SDSR4G v2.1 69.4 29.4 42.4

Table 2: Results obtained for the main and unseen splits
of SR4G. Base models SD v1.4 and v2.1 are shown
alongside with fine-tuned SDSR4G models.

4.2 Main results

Table 2 shows the results for our base and fine-
tuned models for both SR4G splits, with the best
results according to the main comparison metric in
bold.

Main split: We observe that the SDSR4G mod-
els improve all metrics respect to the base SD mod-
els, increasing both object and spatial relation gen-
eration capabilities considerably. These results are
in line with our initial hypothesis, proving that the
exposure to image-caption pairs with explicit spa-
tial relations improves spatial relation generation.
Our results show that SDSR4G v1.4 and v2.1 have
almost the same spatial capabilities, but v2.1 excels
for object rendering. Notice that the differences of
the base SD models are much bigger.

Unseen split: To analyse whether the improve-
ments of SDSR4G on the main split come from
learning specific correlations between pairs of ob-
jects, or between objects and spatial relations, we
check the results on the unseen split. The unseen
split uses different objects in train and test, and it
is thus designed to decouple objects from spatial
relations, allowing us to focus on the performance
for spatial relations in isolation. In Table 2, we
see that both versions of SDSR4G consistently im-
prove the VISORCond and VISOR metrics over the
base SD systems, also for the unseen split. It is
specially interesting that VISORCond, which is not
influenced by object accuracy, is almost the same
as for the main split. That means that our models
are generalizing to unseen objects during the fine-
tuning step. The behaviour of both versions is very
similar to the main split.

Model Par. VISORCond ↑ VISOR ↑ OA ↑
Main split

LayoutGPT 8.1B 64.7 24.7 38.1
VPGen 14.1B 67.7 34.5 51.0
SD v2.1 1.3B 64.0 27.4 42.8
SDSR4G v2.1 1.3B 69.5 31.7 45.6

Unseen split

LayoutGPT 8.1B 64.7 24.7 38.1
VPGen † 14.1B 68.4 37.0 54.1
SD v2.1 1.3B 64.0 28.4 44.4
SDSR4G v2.1 1.3B 69.4 29.4 42.4

Table 3: Comparison to the state of the art, including
model size for both splits. † VPGen is contaminated, as
it was trained on layouts containing spatial triplets that
appear in our test split.

Image quality: As we are using synthetic cap-
tions to train, we make sure that the image gener-
ation capabilities of these models do not worsen
over training. Therefore, we monitor the Fréchet
Inception Distance (FID) (Heusel et al., 2017) be-
tween the model’s generated images from human
annotated captions (retrieved from the COCO 2017
validation split) and their respective real images.
During all of our experiments FID values have been
constant and have not worsen after training. A ran-
dom set of examples can be seen in Figure 4.

4.3 Comparison with the state of the art

We also compare against two recent state-of-the-
art pipeline models: LayoutGPT and VPGen. The
backbone Large Language Model (LLM) of VP-
Gen has already been fine-tuned for layout genera-
tion,3 so we use VPGen with no further adaptation.
Note that the layout generation module of VPGen
has been trained on COCO, and thus contains the
objects underlaying our test sets. In the case of Lay-
outGPT, adaptation is performed with in-context
learning. We thus define a set of instances that
will be used as in-context examples to condition
the 7B parameter Llama-2 LLM. For this purpose,
we randomly extract 400 caption-layout pairs per
different relation from our SR4G dataset, and build
a set of 5.6k instances of caption-layout pairs. For
inference, k = 8 examples are chosen by com-
puting the CLIP-based similarity (Radford et al.,
2021) between the input caption and the set of in-

3They use three different datasets to obtain caption-layout
pairs to fine-tune the LLM: Flickr30K entities (Plummer et al.,
2015), COCO instances 2014 (Lin et al., 2014), and PaintSkills
(Cho et al., 2023a).



Type Relation Main Split Unseen Split

Pr
oj

ec
tiv

e Left of 70.3 (+7.0) 69.8 (+8.8)
Right of 72.4 (+8.0) 67.9 (+3.9)
Above 72.0 (+4.5) 70.4 (+2.2)
Below 71.4 (+4.5) 70.3 (+2.8)

To
po

lo
gi

ca
l Overlapping 86.9 (-4.9) 84.0 (-5.2)

Separated 79.5 (+17.0) 84.8 (+18.5)
Surrounding 29.8 (+2.3) 21.7 (-2.1)
Inside 43.4 (-7.4) 39.2 (-6.4)

Sc
al

e

Taller 71.2 (+1.6) 75.6 (+5.0)
Shorter 67.5 (+8.5) 69.0 (+11.9)
Wider 71.6 (+4.3) 73.0 (+6.9)
Narrower 69.3 (+9.3) 67.1 (+5.0)
Larger 71.5 (+0.5) 74.7 (+1.9)
Smaller 65.2 (+12.7) 63.3 (+13.5)

Table 4: VISORCond values per relation obtained by
SDSR4G v2.1. The difference in VISORCond between
SD v2.1 and fine-tuned SDSR4G is given in brackets.

context examples, retrieving the top-k most similar
examples and using them to condition the model to
generate the proper layout.

Table 3 shows the obtained results for both
SR4G splits. The same trend is observed, i.e.
SDSR4G v2.1 clearly outperforms both state-of-
the-art pipeline systems in terms of VISORCond,
which measures the correctness of the spatial re-
lation when both objects are generated. The im-
provement is especially important considering that
both pipeline systems are significantly larger in
terms of parameters, with a more complex architec-
ture involving LLMs, and that both are specifically
designed to generate scene layouts.

The table also shows the two auxiliary metrics,
with VPGen obtaining the best results for object ac-
curacy and VISOR. That is expected, since VPGen
has been trained specifically for object generation,
and VISOR is calculated over all the recognised
objects. In fact, the better VISOR results are only
due to better object accuracy, as our method pro-
duces better spatial configurations after factoring
out object accuracy from VISOR (VISORCond).
Also note the contamination issue for the unseen
split, as the text-to-layout step of VPGen has been
fine-tuned on COCO. This implies that VPGen has
seen text-layout pairs using the entire set of objects,
having been trained on all the objects in our test
set.

5 Analysis

We show an extensive analysis of the consequences
of fine-tuning on SR4G, covering performance per

Figure 2: The horizontal axis depicts the difference of
VISORCond values between relation pairs with oppos-
ing meanings defined on each side of the vertical axis.
Results for SD and SDSR4G v2.1 on the unseen split.

relation, biases for opposite relations, performance
by frequency of triplets and qualitative examples.

5.1 Analysing performance per relation

In Table 4 we show VISORCond values per spatial
relation for SDSR4G v2.1 (our best model), both in
the main and unseen splits.

First, we observe that all projective relations
significantly improve for both splits. The improve-
ment is bigger for left of and right of. That might be
due to random horizontal flips applied only to the
images during the training of SD models, which are
expected to damage the model’s ability to correctly
learn those relations.

Topological relations show a more variable be-
haviour. In the case of separated, our unique
topological relation that does not involve gener-
ating overlapping objects, SDSR4G is capable of
improving its performance by up to 18.5 points
VISORCond. However, for overlapping, fine-
tuning is not helpful. SD v2.1 already knows how
to generate images with the overlapping relation,
achieving VISORCond values of 91.8 and 89.2 in
both test splits. On the other hand, surrounding and
inside seem to be especially hard. The VISORCond

values are low for the SD model and fine-tuning
even makes them worse (especially for inside).
This is a limitation of our current approach, and dif-
ferent training strategies must be explored to tackle
this issue.

Finally, SDSR4G improves for all scale relations.
It is curious to observe that taller, wider and larger
perform better than their opposites, even though the
improvements over the base SD model are more
modest. That suggests that the base SD model
might have a bias towards those spatial relations.



(a) Results using main splits. (b) Results using unseen splits.

Figure 3: Correlation between the frequency of SR4G triplets in COCO training instances (shown in the logarithmic
horizontal axis) and their respective VISORCond results for SD v2.1 and SDSR4G v2.1. Triplets are grouped by
frequency for visibility.

5.2 Analysing biases for opposite relations

Most of our relations have an opposite relation, i.e.,
right of is the opposite of left of. There are a total
of six pairs of opposites in our relation set, which
are listed in Figure 2 along with the difference in
performance for these pairs before and after fine-
tuning using the unseen split.

We want to see whether performance biases be-
tween opposites are reduced by fine-tuning. Figure
2 shows strong preferences of our base model SD
v2.1 (in Appendix D, we show that those differ-
ences are correlated with the rate of appearance of
each relation in the pretraining dataset of the SD
models). We can also observe that SDSR4G v2.1
significantly reduces the difference in VISORCond

between all relation pairs (except for wider and
narrower), showing that fine-tuning reduces the
inherent biases of the base model.

5.3 Performance by frequency of triplets

As SR4G is derived from natural images, some
triplets are more frequent than others. To mea-
sure how the frequency of training triplets affects
the results of our fine-tuned models, in Figure 3,
we depict the VISORCond values of SD v2.1 and
SDSR4G v2.1 depending on the frequency of each
triplet in the COCO training set.

Figure 3a shows the results for the main split. In
this case, the image generator has seen test triplets
during training and, as expected, the more frequent
these triplets, the greater the improvement after the
fine-tuning. We can also observe that, even though
SD models have not seen COCO images before,

its performance is correlated with our computed
frequencies.

On the other hand, Figure 3b shows a similar plot
when training and evaluating on the unseen split.
We observe similar correlations as in Figure 3a with
both models. However, now we are evaluating on
images generated from unseen triplets composed by
objects that have not been seen during fine-tuning.
Therefore, these results show that it is easier to
transfer what is learnt to the most common triplets,
even though we have not trained on them.

5.4 Qualitative Analysis
In order to visualize and qualitatively evaluate the
generated images, we take SD v2.1 and SDSR4G

v2.1 fine-tuned on the main split. We discard the
most common and uncommon spatial triplets. The
rationale is that the most common triplets often con-
tain easy-to-generate relations (e.g., ⟨truck, larger,
dog⟩) as generating both objects is enough to in-
stantiate the relation itself, whereas the least fre-
quent ones do not seem natural and would not be
used in a prompt (e.g., ⟨bus, shorter, traffic light⟩).
Therefore, we randomly pick triplets that occur be-
tween 100 and 1,000 times in COCO annotations
(we obtain that range from the frequency analysis
in Figure 3). We start generating images using ran-
dom captions. We keep the first nine image pairs
where both objects are generated correctly. Those
nine pairs can be found in Figure 4, where we also
indicate whether the spatial relation in the caption
is depicted correctly or not.

Some of the captions of Figure 4 describe easy
spatial relations, such as number 2, 3, 6, 7 and 9,



4) A person overlapping a sheep.

7) A laptop shorter than a dining table.

1) A bowl right of a sandwich

5) A dog and a chair separated. 6) A motorcycle smaller than a bus.

3) A cup smaller than a hot dog.

8) A teddy bear right of a book.

SD SDSR4G SD SDSR4G

SD SDSR4G SD SDSR4G SD SDSR4G

SD SDSR4G

SD SDSR4G SD SDSR4G

2) A traffic light taller than a bicycle.

9) A refrigerator and a book separated.

SD SDSR4G

Figure 4: Image generation examples by SD v2.1 and SDSR4G v2.1 fine-tuned on the main split. Following our
relation-specific heuristics, if the relation in the caption is correctly depicted, we indicate this with a green tick.
Otherwise, there is a red cross in the top-right corner of the image.

where usually, if the correct objects are generated,
the relation is also correct. SDSR4G generates those
relations correctly, except for 3, which we denoted
as a failure because the cup is not fully visible (the
decision is arguable). SD fails for 2, rendering
the traffic light very oddly. Captions 1, 4, 5 and
8 are more demanding: SDSR4G correctly depicts
all the relations (right of twice, overlapping and
separated), but SD fails for 1, 5 and 8. The failures
are interesting: for 1 and 8, the spatial relations of
the captions might not be the most typical ones in
natural images, and SD struggles. However, for 5 it
should be very common to see dogs and chairs sep-
arated, but SD does not follow the caption, which
suggests that the relation separated is not known
to SD.

6 Conclusions

In this work we define a dataset generation pipeline
to build synthetic captions containing explicit spa-
tial relations from COCO images and annotations.
Fine-tuning diffusion models with these image-
caption pairs outperforms the original diffusion
models and also surpasses state-of-the-art pipeline
models for spatial relation generation. We find
that SDSR4G generalizes to unseen objects during

fine-tuning. Further analysis shows that SDSR4G

learns to better depict projective and scale relations,
reduces the bias that the original model has for op-
posite relations, and generalizes better to spatial
triplets that are more frequent in real images.

As future work, we plan to expand our relation
set to include depth information with relations such
as in front of and behind. We would also like to
explore new ways to collect and annotate natural
captions with spatial relations and evaluate state-
of-the-art models with them.

7 Limitations

SR4G only contains captions in English, which lim-
its its usage for non-English languages. To make it
multi-lingual, caption generation scripts should be
modified. On the other hand, SR4G is focused on
unambiguous spatial relations defined over bound-
ing box information, since they can be generated
and evaluated automatically using off-the-shelf ob-
ject detectors and heuristic rules. In that sense,
orientation relations are discarded, even though
their analysis is very interesting. Finally, we focus
on 2D spatial relations. To introduce 3D relations
should also be possible, using off-the-shelf depth
estimation systems for images.
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A Details on SR4G Dataset

In this appendix, we give more details about our
main and unseen splits, as well as defining our
hand designed templates and heuristics used to de-
termine whether an image contains a given spatial
relation between two objects.

A.1 Hand designed templates

The templates we use to generate captions from
spatial triplets are shown in Table 5. As can be seen,
those templates are designed to be as simple as
possible, omitting attributes and verbs and focusing

Type Relation Template

Pr
oj

ec
tiv

e Left of ⟨A⟩ to the left of ⟨B⟩.
Right of ⟨A⟩ to the right of ⟨B⟩.
Above ⟨A⟩ above ⟨B⟩.
Below ⟨A⟩ below ⟨B⟩.

To
po

lo
gi

ca
l Overlapping ⟨A⟩ overlapping ⟨B⟩.

Separated ⟨A⟩ and ⟨B⟩ separated.
Surrounding ⟨A⟩ surrounding ⟨B⟩.

Inside ⟨A⟩ inside of ⟨B⟩.

Sc
al

e

Taller ⟨A⟩ taller than ⟨B⟩.
Shorter ⟨A⟩ shorter than ⟨B⟩.
Wider ⟨A⟩ wider than ⟨B⟩.

Narrower ⟨A⟩ narrower than ⟨B⟩.
Larger ⟨A⟩ larger than ⟨B⟩.
Smaller ⟨A⟩ smaller than ⟨B⟩.

Table 5: Templates used to generate synthetic captions.

only on the objects and their spatial relation. This
is very important to analyse spatial understanding
in isolation.

A.2 Heuristic rules

We use heuristic rules to both build the dataset and
evaluate the generated images. Assuming the spa-
tial triplet ⟨ls, r, lo⟩ and the bounding boxes of its
objects bbs and bbo that appear in an image, we
define the heuristic rule fr of relation r to deter-
mine whether the triplet is fulfilled in the image
or not. We set bbi = {x0i , y0i , x1i , y1i } by defining
the top-left {x0i , y0i } and bottom-right coordinates
{x1i , y1i } of the bounding-box (bbox).

For left of, right of, above and below, we fol-
low the heuristic rules defined in (Gokhale et al.,
2023), by computing the centroid of each bbox
ci = {xci , yci } and comparing their corresponding
coordinates.

As we expand to 10 more relations, we follow
the rules described in (Johnson et al., 2018). In
our scale relations we compare either the height
(taller and shorter), width (wider and narrower)
or area (larger, smaller) difference between both
bboxes. In the cases of surrounding and inside, we
check whether bbo is contained in bbs or vice versa.
Finally, using the Intersection over Union (IoU) of
both bboxes, we say that both objects are separated
if their IoU is 0, and overlapping if their IoU is
positive.



OTrain

person, car, motorcycle, airplane, train, boat,
fire hydrant, bench, bird, elephant, bear, giraffe,
handbag, tie, snowboard, baseball bat, baseball
glove, surfboard, cup, knife, spoon, apple, sand-
wich, orange, broccoli, carrot, pizza, donut, chair,
couch, potted plant, bed, dining table, toilet, laptop,
mouse, remote, keyboard, oven, sink, book, clock,
teddy bear, hair drier, toothbrush

OVal

umbrella, cake, tv, refrigerator, vase

OTest

bicycle, bus, truck, traffic light, stop sign, parking
meter, cat, dog, horse, sheep, cow, zebra, backpack,
suitcase, frisbee, skis, sports ball, kite, skateboard,
tennis racket, bottle, wine glass, fork, bowl, banana,
hot dog, cell phone, microwave, toaster, scissors

Table 6: Objects used in train, val and test sets of our
Unseen split.

A.3 Main and Unseen Splits

Table 6 shows the sets of objects used for training,
validation and test in the unseen split, which we
refer to as Otrain, Oval and Otest, respectively.

There are few combinations that can be built
with Oval for validation in the unseen split, so we
select triplets that contain one object from Oval

at least once and do not contain any object that is
set aside for the test split. In other words, there
are up to (2 · |Otrain| · |Oval| +

(|Oval|
2

)
) · 14 =

6, 580 triplets that fulfil this rule (around 5,326 that
naturally occur in the COCO dataset).

Validation is computationally costly in both
splits, as several images have to be generated to
compute the evaluation metrics defined in Section
3.4. Preliminary experiments showed that gener-
ating just 10k images is enough to get consistent
results. Thus, we randomly selected 2.5k spatial
captions for the validation splits for both main and
unseen splits (as we generate 4 images per caption).

B Training settings

Hyperparameters: In Table 7 we define the hy-
perparameters used for training. Learning rate and
optimizer parameters are the ones used during the
pretraining of SD models, the other listed hyperpa-
rameters have been adapted to our available infras-

Hyperparameter Value

Training steps 100k
Batch size 64
Learning Rate 10−5

Optimizer AdamW
Adam β1 0.9
Adam β2 0.999
Adam ϵ 10−8

Weight decay 0.01
Mixed-precision bf16

Table 7: Fine-tuning hyperparameters of the diffusion
models.

tructure. We also take advantage of Exponential
Moving Average (Kingma and Ba, 2015) to update
the parameters of the models with an AdamW op-
timizer (Loshchilov and Hutter, 2019) and we do
not use any learning-rate scheduler. We do valida-
tion runs every 5k steps and do not set any early-
stopping mechanism.

GPU usage: Due to different memory needs,
we use 2 and 4 NVIDIA A100 GPUs to fine-tune
SD v1.4 and SD v2.1 models, respectively. In both
cases we use an effective batch size of 64 by chang-
ing the amount of instances assigned to each GPU.
Each of our fine-tunings need 3 days to be com-
pleted.

Data augmentation: During training we apply
random horizontal flips and random crops to our
images as a data augmentation strategy (resulting
in I∗ and Oj). Note that, random horizontal flips
are common during the training of text-to-image
models. This implies that spatial relations, such
as left of and right of, can not be learnt correctly
(as captions are not transformed according to those
flips). Nevertheless, in our case we apply the same
transformations to bboxes, which are used to gen-
erate captions synthetically, keeping this data aug-
mentation strategy while maintaining the generated
caption’s spatial correctness.

Random crops might reduce the number of ob-
jects in OI∗ . If there are less than two objects after
a given crop, we redo it up to max_iter times until
there are at least two objects in the image.

We also define the hyperparameter k as the num-
ber of captions that can be concatenated to build
the image-caption pairs built during training. Ta-
ble 8 shows the results obtained by concatenating
k ∈ {1, . . . , 5} captions. We observe that k = 2
obtains the best results, and we use this value of k



Nº Captions VISORCond ↑ VISOR ↑ OA ↑
1 68.1 26.5 38.9
2 69.4 27.4 39.5
3 67.7 27.1 40.0
4 63.7 21.9 34.3
5 63.0 22.9 36.3

Table 8: We fine-tune SD v1.4 in the main split concate-
nating different amounts of captions in the input. These
results correspond to the validation set of our main split.

during our entire work.

C Evaluation settings

The evaluation metrics used in this paper use an
object detector to determine whether objects are
generated correctly and where are located in the
image. Following (Gokhale et al., 2023), we use
OWL-ViT, an open-vocabulary object detector that
uses a CLIP (Radford et al., 2021) backbone with
a ViT-B/32 transformer architecture (Zhai et al.,
2022). We also set 0.1 as the confidence threshold
of OWL-ViT, which determines how sure the model
must be for a given region of the image to contain
a specific object.

As an open-vocabulary object detector, OWL-
ViT takes as input the objects we want to detect
and, in order to do so, we use their recommended
template ("a photo of a ⟨OBJ⟩.") instead of the
object label alone.

Due to the variability of images generated by Sta-
ble Diffusion, we generate 4 images per evaluation
caption. Therefore, we generate 10k images per
validation and a total of 243.3k and 32.1k images
to test each model in the main and unseen splits,
respectively.

D LAION Dataset and Spatial Relations

Figure 2 shows that Stable Diffusion models have
a strong bias towards some spatial relations, pre-
ferring taller to shorter, for instance. To complete
those results, we also show the same graphic but
in the main split, which exhibits a very similar be-
haviour (Figure 5). To understand the origin of
those biases, we checked the frequency of each
spatial relation in the LAION-2B dataset (English
subset), used to train SD models. Table 9 shows the
appearances of 12 relations, divided in 6 relation
pairs with opposite meanings. Every relation has
its number of appearances in LAION into brackets.
For each opposite relation pair, the first column con-

Figure 5: The horizontal axis depicts the difference of
VISORCond values between relation pairs with oppos-
ing meanings defined on each side of the vertical axis.
These results correspond to SD and SpaD v2.1 trained
and evaluated using main splits.

Preferred Rel. Opposite Rel. Ratio of Appearance

Right (5M) Left (5.6M) 0.91
Above (1.6M) Below (0.7M) 2.47
Inside (2M) Surrounding (0.3M) 7.61

Taller (49.3K) Shorter (29.4K) 1.86
Wider (54.6K) Narrower (5.7K) 9.62
Larger (0.8M) Smaller (0.2M) 3.17

Table 9: Ratio in which the first relation appears more
than the other. The relation in the first column is the
preferred one by SD.

tains the relation that best works with SD. The third
column shows the ratio of appearance between the
preferred relation and its opposite (>1 indicates
that the preferred relation appears more times in
LAION than its opposite relation). The results in-
dicate that there is a clear correlation between the
ratio of appearance of a relation and the bias of
SD models. The only exception is the right and
left pair, but both appear similar times and the bias
towards right is very small.





B. ERANSKINA

Arrazonamendu Espaziala Ikasten

Hizkuntza-ereduetan

B.1 SSTD-ren Inplementazioa

Eranskin honetan kaxa inguratzaileetatatik erlazio espazialak inferitzeko errege-

lak eta heuristikoak azaltzen ditugu, 4.2. Taulako kategoriatan banatuta. Gainera,

SSTDeko galderak sortzeko erabili ditugun txantiloiak zehaztu ditugu. Lan egiten

ditugun kaxa inguratzaileak normalizatuta daude [0, 1] tartean.

Objektu baten posizioa. Lehenik eta behin, top left, top right, bottom left eta

bottom right eskualdeak definitu ditugu. Adibidez, (0, 0, 0,5, 0,5) top left eskual-

deari dagokio. Kaxa inguratzaile jakin bat eskualde horren badago, erlazio espa-

zial hau betetzen duela deritzogu. Bestela, ondorengo eskualdeetan dagoen be-
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B ARRAZONAMENDU ESPAZIALA IKASTEN HIZKUNTZA-EREDUETAN

giratzen dugu: top, bottom, left edo right. Adibide gisa, objektu bat left eskual-

dean dagoela diogu bere kaxa inguratzailea (0, 0, 0,5, 1) tartean badago. Aurreko

kondizioak betetzen ez dituenean, objektua irudiaren zentroan dagoela deritzogu

(center). obj objektuak reg eskualdean dagoen galdera egiteko ondorengo txanti-

loia erabiltzen dugu: "is ⟨obj⟩ in ⟨reg⟩ region?"

Bi objekturen arteko tamaina. Izan bedi obj1 eta obj2 objektuak dagozkien

kaxa inguratzaileekin. Objektu bakoitzeko ondorengo funtzioak kalkulatzen di-

tugu, hauen kaxa inguratzaileak erabiliz: width(obj), tall(obj) eta area(obj).

width(obj1) > width(obj2) baldintza betetzen bada, obj1 obj2 baino zabalagoa

dela (wider) zehazten dugu. Adibide berarekin obj2 obj1 baino estuagoa (narro-

wer) dela erraz ondorioztatu dezakegu ere bai. Pareko erregelak aplikatzen ditu-

gu taller/shorter erlazioekin length(obj) funtzioa erabiliz eta larger/smallerrekin

area(obj) funtzioa erabiliz. Galderaren txantiloiari begira, obj1, obj2 objektuak

eta tamaina konparatzen duen rel erlazioa izanik, ondorengoa erabiltzen dugu:

"is ⟨obj1⟩ ⟨rel⟩ than ⟨obj2⟩?"

Bi objekturen arteko posizioa. Izan bedi obj1 eta obj2 objektuak dagozkien ka-

xa inguratzaileekin. obj1 objektuaren kaxa inguratzailea obj2-ren kaxaren barruan

badago, obj1 obj2-ren barne dagoela diogu (inside), baita obj2-k obj1 inguratzen

duela ere (surrounding). left of, right of, above eta below erlazioetarako, bi kaxen

arteko zentroek osatzen duten angelua erabiltzen dugu. Beste hitzetan, obj1-en

kaxaren zentroa jatorri gisa hartuz, lau koadrantetan zatitzen dugu irudia. obj2-

ren zentroa [−3
4
π, 3

4
π] angeluen artean badago, obj2 obj1-en ezkerretara dagoela
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B.2 OROKORTZE AHALMENAREN ANALISI KUALITATIBOA

deritzogu (left of ). Antzekoa burutzen dugu beste 3 erlazioekin: [−3
4
π, −1

4
π] abo-

ve erlazioari dagokio, [−1
4
π, 1

4
π] right of erlazioari and [1

4
π, 3

4
π], berriz, below

erlazioari. Azkenik, bi kaxa inguratzaileen IoU balioa kalkulatuz (Intersection-

over-union, obj1 eta obj2 separatuta daudela diogu hauen IoU baioa zerokoa bada

(separated), edota teilakatuta daudela IoU> 0 bada (overlapping). Galderaren

txantiloiari begira, obj1, obj2 objektuak eta posizioa konparatzen duen rel erlazioa

izanik, ondorengoa erabiltzen dugu: "is ⟨obj1⟩ ⟨rel⟩ ⟨obj2⟩?". separated erlazioa-

ren kasuan aldaera bat erabiltzen dugu: "are ⟨obj1⟩ and ⟨obj2⟩ separated?".

B.2 Orokortze Ahalmenaren Analisi Kualitatiboa

Bi hizkuntza-ereduren hainbat adibide konparatzen ditugu: i) VSRen bakarrik

doitu den BERT-base eredua, kokapen tokenak erabiltzen dituena (BERT bezala

izendatuko dugu hemendik aurrera), eta ii) aurretik ikasketa espaziala jasan duen

BERT-base eredua, kokapen tokenak erabiltzen duelarik ere bai (st-BERT deritzo-

guna).

Aipatu dugun bezala, atal honetan SSTD datu-multzoarekin doikuntza buru-

tzeak ematen duen orokortze ahalmena aztertu nahi dugu. Horretarako, SSTD-en

agertzen ez diren bi erlaziotan zentratu gara: behind eta in front of. Erlazio hauek

ezin dira guk erabilitako kaxa inguratzaileekin zehaztu anbiguetaterik sartu ga-

be, sakonera sartzen dute ekuazioan eta. Behind-en kasuan 136 instantzia ditugu

VSR-ko ebaluazio azpimultzoan. BERT-ek 60 puntuko asmatze-tasa lortzen du

eta st-BERT ereduak, berriz, 75. In front of erlazioaren kasuan 116 instantzia
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ditugu. BERTek 58 puntuko asmatze-tasa lortzen du eta st-BERT ereduak, be-

rriz, 61. Emaitza hauek SSTD-ko ikasketak laguntzen duela erakusten du, erlazio

hauek ikasketa horretan agertzen ez badira ere. B.1. Irudiak gertatzen ari denaren

intuizioa ekar dezake. Irudiko lehen adibidean, autobusa bizikleta baino askoz

txikiagoa dela ikus daiteke. SSTD-k bi objekturen arteko tamaina erlazionatzen

dituzten erlazioak ditu eta, gure ustez, autobusak normalean bizikletak baino han-

diagoak direla ikasi du ereduak. Horrela, VSR-ko doikuntzan zehar ereduak in-

formazio hau erabili dezake objektuen sakonera zein den inferitzeko. Antzeko

arrazoinamendua egin daiteke bigarren (txakurra eta motoa) eta laugarren (landa-

rea eta bankua) adibideen kasuan, instantzia hauek in front of erlazioa dutelarik.

Hala ere, hirugarren adibiderako (autobusa eta liburua), st-BERT ereduak, bi ob-

jektuen kaxen informazioa erabiliz, liburua ikusgarri dagoela inferitzeko kapaza

dela ikus dezakegu. Azken finean, liburuaren kaxa inguratzailearen informazioa

lortu ahal izateko liburua autobusaren aurrean egon behar du. BERT-ek, ordea,

ezin izan du ondo aurreikusi kasu hau.

SSTD-en ez dauden beste bi erlaziorekin berdina egin dugu. Kasu honetan

objektuen arteko tamaina konparatzen dituzte: next to eta far from. next to er-

lazioaren kasuan, BERT-ek 56 puntu lortzen ditu eta st-BERT-ek, berriz, 73 (41

adibide konparatzen ditugu). far from-en kasuan, BERT-ek 83 eta st-BERT ere-

duak 91 lortzen dituzte (23 adibideren gainean kalkulatuta). Kontuan hartzekoa

da far away from eta far from erlazioak oso antzekoak direla, eta st-BERT ere-

duak askoz puntuazio hobea lortzen duela (88 vs. 73, 49 instantzia erabiliz). B.2.

Irudiko lehenengo adibidean (pizza eta aulkia), aulkiaren tamaina txikia dela eta,
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B.2 OROKORTZE AHALMENAREN ANALISI KUALITATIBOA

B.1 Irudia – Bi BERT ereduren iragarpenen arteko konparaketa VSR-ko eba-
luazio instantzietan. Ikasketa espaziala jasan duen BERT ereduak zuzen ebazten
ditu kasu hauek, baina VSR-n bakarrik doitu den BERT ereduak ez ditu ondo
asmatzen.

irudian aulkia oso sakon dagoela inferitu dezakegu. st-BERT ereduak informazio

hau erabili dezakeela dirudi, BERT-ek ez bezala. Bigarren adibiderako (hozkailua

eta katua), bi kaxa inguratzaileak teilakatzen dira eta st-BERT-ek bi objektuak oso

urrun ez daudela ondorioztatzen du, bi objektuen arteko tamaina ezberdintasunak

normaltzat hartu dituelako dirudienez. Hirugarren adibidean antzeko arrazoina-

mendua erabiltzen du ere bai (motxila eta katua). Azkenekoan, berriz, saltxitxa

tuperraren barruan dagoela ikusi du. st-BERT ereduak next to erlazioan kasu hau

ezohikoa dela ondorioztatzen du, baina BERT-ek ezin du berdina burutu, biek iru-

diaren deskribapen bera erabiltzen badute ere.
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B ARRAZONAMENDU ESPAZIALA IKASTEN HIZKUNTZA-EREDUETAN

B.2 Irudia – Bi BERT ereduren iragarpenen arteko konparaketa VSR-ko eba-
luazio instantzietan. Ikasketa espaziala jasan duen BERT ereduak zuzen ebazten
ditu kasu hauek, baina VSR-n bakarrik doitu den BERT ereduak ez ditu ondo
asmatzen.

B.3 Erregela Bidezko Sistemaren Inplementazioa

Erregeletan oinarritutako sistema inplementatzeko, VSR eta SSTD erlazioen ar-

teko mapaketa bat burutu behar dugu. 4.3.4. Atalean azaldu den bezala, VSR-ko

65 erlazioetatik 17 bakarrik mapatu daitezke. Mapaketa hau B.1. Taulan azaltzen

da. VSR-ko ebaluazio instantzia bat hartuta, erlazio espaziala zein den begiratzen

dugu eta SSTD-ko beste erlazio batera mapatu dezakegun begiratzen dugu. Mapa-

keta burutu badaiteke, ondorengoa burutzen dugu: i) VSR-ko goiburukotik izena

eta objektua erauzten ditugu karaktere kateko manipulazioa burutuz; ii) izen eta

objektu berdinak bilatzen ditugu deskribapen testualean; iii) biak aurkitzen ba-
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B.3 ERREGELA BIDEZKO SISTEMAREN INPLEMENTAZIOA

dira, hauen kaxa inguratzaileak erauzi eta SSTD-ko erregelak aplikatzen ditugu

inferentzia bukatzeko; iv) mapaketak huts egiten badu, erantzun bitarra ausaz au-

keratzen dugu (%50-ko probabilitatearekin).

VSR relation SSTD Relations

at the left side of left of
at the right side of right of

around surrounding
into inside

on top of above
beneath below
left of left of

right of right of
under below
below below
above above
over above

contains surrounding
within inside

surrounding surrounding
inside inside

outside separated

B.1 Taula – VSR eta SSTD erlazioen arteko mapaketa.
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C. ERANSKINA

Erlazio Espazialek Baldintzatutako Irudien Sorrera

C.1 SR4G Datu-multzoa

Eranskin honetan, main eta unseen azpimultzoen inguruko detaile gehiago ema-

ten ditugu, baita hirukote espazialak berbalizatzeko erabili ditugun txantiloiak eta

hirukote hauek irudian betetzen diren ebaluatzeko heuristikoak ere.

C.1.1 Eskuz Zehaztutako Txantiloiak

Hirukote espazialetatik goiburukoak sortzeko erabili diren txantiloiak C.1. Taulan

azaltzen dira. Ikus daitekeenez, goiburuko hauek ahal den sinpleenak izatea nahi

dugu, beharrezkoak ez diren atributu edota aditzak alde batera utziz eta hirukote

espazialean bakarrik zentratuz. Azken hau oso garrantzitsua da ulermen espaziala

isolatuta aztertzeko.
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C ERLAZIO ESPAZIALEK BALDINTZATUTAKO IRUDIEN SORRERA

Mota Erlazioa Txantiloia

Pr
oi

ek
tib

oa Left of ⟨A⟩ to the left of ⟨B⟩.
Right of ⟨A⟩ to the right of ⟨B⟩.
Above ⟨A⟩ above ⟨B⟩.
Below ⟨A⟩ below ⟨B⟩.

To
po

lo
gi

ko
a Overlapping ⟨A⟩ overlapping ⟨B⟩.

Separated ⟨A⟩ and ⟨B⟩ separated.
Surrounding ⟨A⟩ surrounding ⟨B⟩.

Inside ⟨A⟩ inside of ⟨B⟩.

Ta
m

ai
na

Taller ⟨A⟩ taller than ⟨B⟩.
Shorter ⟨A⟩ shorter than ⟨B⟩.
Wider ⟨A⟩ wider than ⟨B⟩.

Narrower ⟨A⟩ narrower than ⟨B⟩.
Larger ⟨A⟩ larger than ⟨B⟩.
Smaller ⟨A⟩ smaller than ⟨B⟩.

C.1 Taula – Goiburuko sintetikoak sortzeko txantiloiak.

C.1.2 Erregela Heuristikoak

Erregela heuristikoak datu-multzoa sortzeko eta sortutako irudiak ebaluatzeko

erabiltzen ditugu. Hirukote espazial bat ⟨ls, r, lo⟩ eta hirukotea osatzen duten

bi objektuen kaxa inguratzaileak izanik (bbs eta bbo), fr funtzioa erabiltzen du-

gu s eta o objektuen arteko r erlazioa irudian betetzen den ala ez zehazteko.

bbi = {x0
i , y

0
i , x

1
i , y

1
i } kaxa inguratzailea kaxaren goi-ezker {x0

i , y
0
i } eta behe-

eskuinalde {x1
i , y

1
i } erpinen koordenatuekin definitzen dugu.

left of, right of, above eta below erlazioetarako Gokhale et al. (2023) lanean

definitutako fr funtzioak erabili ditugu, kaxa bakoitzaren ci = {xc
i , y

c
i} zentroi-

deak kalkulatuz eta erlazio bakoitzari dagozkion koordenatuak konparatuz.
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C.1 SR4G DATU-MULTZOA

C.1 Irudia – Bi objektu detektatuta di-
tuen irudi bat. Objektuen kaxa ingura-
tzaileak marraztuta azaltzen dira.

Erlazioa fr(bbm, bbe) fr(bbe, bbm)

Left of ✓
Right of ✓
Above ✓
Below ✓

Overlapping
Separated ✓ ✓
Surrounding
Inside

Taller ✓
Shorter ✓
Wider ✓
Narrower ✓
Larger ✓
Smaller ✓

C.2 Taula – C.1. Irudiko objektuen kaxaak kon-
tuan hartuta fr erabili dugu zein erlazio betetzen
diren jakiteko. Lehenengo zutabean gizona da
subjektua eta bigarrenean, berriz, elefantea.

Definitu ditugun beste 10 erlazioen erregelak Johnson et al. (2018) lanetik

erauzi ditugu. Tamaina erlazioetan objektuen kaxen altuerak (taller eta shorter),

zabalerak (wider and narrower) edota azalerak (larger eta smaller) konparatu di-

tugu. Surrounding erlazioaren kasuan bbo kaxa bbs-ren barruan dagoen begiratzen

dugu, eta inside-n kasuan, berriz, alderantziz. Azkenik, bi kaxa inguratzaileen

Intersection-over-Union metrika (edo IoU) erabili dugu gelditzen zaizkigun bi er-

lazioetarako. Bi kaxen IoU balioa 0-koa bada bi objektuak banatuta daudela diogu

(separated), eta IoU balioa positiboa bada, berriz, gainezarrita daudela (overlap-

ping).
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C ERLAZIO ESPAZIALEK BALDINTZATUTAKO IRUDIEN SORRERA

Adibide gisa, C.1. Irudiko bi objektuen arteko zein erlazio espazial betetzen

diren aztertu dugu. Horretarako, bi objektuen kaxa inguratzaileak lortu ditugu:

bbm = {120, 220, 152, 377} gizonarena, eta bbe = {160, 84, 351, 524} elefantea-

rena. Behin kaxa inguratzaileak izanik, atal honetan zehaztutako fr funtzioak

erabili ditugu fr(bbm, bbe) eta fr(bbe, bbm) konbinazio guztiak kalkulatzeko.

Konbinazio hauen emaitzak C.2. Taulan azaltzen dira. Erlazio gehienetan iru-

di hau bakarrik begiratuz zein erlazio betetzen diren ikustea erraza da, kalkulurik

egin gabe, above eta below kasuetan izan ezik. Bi kaxen zentroideen alturak oso

parean daude eta ez da oso naturala egiten bata bestea baino gorago dagoela esa-

tea. Hala ere, datu hauetan entrenatutako ereduek irudi gehiago ikusten dituzten

heinean, above eta below-ren esanahia ikasten joango dira.

C.1.3 Main eta Unseen Bertsioak

C.3. Taulan datu-multzoaren unseen bertsioan erabilitako objektu multzoak azal-

tzen dira. Objektu multzo hauek entrenamendurako, garapenerako eta ebaluazio-

rako daude pentsatuta, Otrain, Oval eta Otest deritzogunak, hurrenez hurren.

Oval azpimultzoko objektu kopurua txikia denez, hirukote ezberdin gutxi eraiki

daitezke. Horregatik, gutxienez Oval-eko objektu bat duten hirukoteak aukeratzen

ditugu, beste objektua Otrain ∪Oval multzokoa izanik. Guztira, (2 · |Otrain| · |Oval|+
(|Oval|

2

)
) · 14 = 6.580 hirukote ezberdin lor ditzakegu murriztapen honekin, non

5.326 COCO datu-multzoko irudietan agertzen diren.

Balidazioa konputazionalki garestia da bi bertsioetan, milaka irudi sortu behar

baitira 5.2.2. Ataleko metrikak kalkulatzeko. Hainbat esperimentu burutuz, 10K
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C.2 LAION DATU-MULTZOA ETA ERLAZIO ESPAZIALAK

Otrain

person, car, motorcycle, airplane, train, boat, fire hydrant, bench, bird,
elephant, bear, giraffe, handbag, tie, snowboard, baseball bat, baseball glove,
surfboard, cup, knife, spoon, apple, sandwich, orange, broccoli, carrot, pizza,
donut, chair, couch, potted plant, bed, dining table, toilet, laptop, mouse, re-
mote, keyboard, oven, sink, book, clock, teddy bear, hair drier, toothbrush

Oval

umbrella, cake, tv, refrigerator, vase

Otest

bicycle, bus, truck, traffic light, stop sign, parking meter, cat, dog, horse,
sheep, cow, zebra, backpack, suitcase, frisbee, skis, sports ball, kite, ska-
teboard, tennis racket, bottle, wine glass, fork, bowl, banana, hot dog, cell
phone, microwave, toaster, scissors

C.3 Taula – Unseen bertsioan zehaztu diren entrenamendu, garapen eta ebalua-
zio azpimultzoetan erabilitako objektuak.

irudi sortzearekin emaitza kontsistenteak lortzen ditugula antzeman dugu. Ho-

rrela, 2,5K goiburuko espazial aukeratu genituen garapen azpimultzoetarako, bai

main eta baita unseen bertsioan ere. 4 irudi sortzen ditugu goiburuko bakoitzeko,

10K irudi sortuz guztira.

C.2 LAION Datu-multzoa eta Erlazio Espazialak

5.2. Irudian Stable Diffusion (SD) ereduek erlazio espazialen arteko alborapen

handia dutela antzeman dugu, taller hobetsiz shorter beharrean, adibidez. Emai-

tza hauek osatzeko esperimentu bera errepikatu dugu SR4G datu-multzoaren main

bertsioarekin, joera antzekoak antzemanik (ikus C.2. Irudia). Alborapen hauen ja-
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C ERLAZIO ESPAZIALEK BALDINTZATUTAKO IRUDIEN SORRERA

C.2 Irudia – Ardatz horizontalak VISORCond balioen diferentziak zehazten di-
tu aurkako esanahiak dituzten erlazio pareen artean, erlazio pare bakoitza ardatz
bertikalean zehaztuta dagoelarik. Emaitza hauek SD v2.1 eta SDSR4G v2.1 ere-
duei dagokie, main bertsioan entrenatuta eta ebaluatuta daudenak.

Erlazio hobetsia Aurkako erlazioa Agerpen-proportzioa

Right (5M) Left (5,6M) 0,91
Above (1,6M) Below (0,7M) 2,47
Inside (2M) Surrounding (0,3M) 7,61

Taller (49,3K) Shorter (29,4K) 1,86
Wider (54,6K) Narrower (5,7K) 9,62
Larger (0,8M) Smaller (0,2M) 3,17

C.4 Taula – Aurkako erlazio pare bakoitzaren agerpen-proportzioa LAION-2B-
en datu-multzoan. Lehenengo zutabean agertzen den erlazioa SD ereduak ho-
besten duena da.
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C.3 ENTRENAMENDUAN EGINDAKO DATU GEHIKUNTZA

torria ulertzeko, erlazio espazialen agerpen kopuruak aztertu ditugu LAION-2B-

en datu-multzoan, SD ereduak entrenatzeko erabili den datu-multzoa hain zuzen

ere. C.4. Taulak 12 erlazioren agerpen kopuruak erakusten ditu, aurkako esa-

nahia duten 6 erlazio pareetan banatuta. Erlazio bakoitzak LAION-2B-en datu-

multzoko agerpen kopurua parentesi artean dauka. Erlazio pare bakoitzeko, lehe-

nengo zutabean agertzen dena SD v2.1 ereduak hobesten duena da. Hirugarren

zutabeak, berriz, erlazio hobetsia bere erlazio parea baino zenbat aldiz gehiagotan

agertzen den zehazten du, agerpen-proportzioa deritzoguna. Bat baino handiagoa

den agerpen-proportzioak erlazio hobetsia bere parea baino gehiagotan agertzen

dela erakusten du. Gure emaitzek korrelazio argi bat erakusten dute agerpen-

proportzio eta SD v2.1 ereduaren preferentzien artean. Salbuespen bakarra right

eta left parearen kasua da, non biak kopuru antzekoetan agertzen diren eta right

erlazioarekin duen preferentzia oso txikia den.

C.3 Entrenamenduan Egindako Datu Gehikuntza

Entrenamenduan zehar hainbat datu gehikuntza estrategia aplikatzen ditugu, bes-

teak beste ausazko mozketak eta iraulketa horizontalak. Ausazko iraulketa hori-

zontalak ohikoak dira testu bidezko irudi sortzaileen entrenamenduan, baina iraul-

keta hauek irudiak bakarrik eraldatzen dituzte, goiburukoak berdin utziz. Horre-

gatik, left of eta right of bezalako erlazio espazialen ikasketa ez da ahalbidetzen.

Dena den, gure kasuan transformazio horiek ere irudiko objektuei aplikatzen die-

gu ere bai, goiburukoak automatikoki sortzeko erabiltzen ditugunak hain zuzen
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C ERLAZIO ESPAZIALEK BALDINTZATUTAKO IRUDIEN SORRERA

Nº Captions VISORCond ↑ VISOR ↑ OA ↑
1 68,1 26,5 38,9
2 69,4 27,4 39,5
3 67,7 27,1 40,0
4 63,7 21,9 34,3
5 63,0 22,9 36,3

C.5 Taula – SD v1.4 doitu dugu SR4G-ko main bertsioan goiburuko kopuru
ezberdinak konkatenatuz ereduaren sarreran. Emaitza hauek main bertsioko ga-
rapenean lortu dira.

ere. Horrela, datu gehikuntza hau erabili dezakegu erlazio espazialen oinarritze

zuzena mantenduz.

Ausazko mozketak irudietako objektu kopurua murriztu dezakete, OI∗ zerren-

da txikituz. Bi objektu baina gutxiago gelditzen diren mozketetan mozketa hau

errepikatzen dugu |OI∗| ≥ 2 izan arte, gehienez max_iter saiakera eginik.

Ereduari elikatzen diogun sarrera hainbat goiburukoen arteko konkatenazioa

izan daitekeenez, k hiperparametro bat ere definitu dugu konkatenatzen diren goi-

buruko kopuruak zehazteko. C.5. Taulak k ∈ {1, . . . , 5} goiburuko konkatenatuz

lortzen ditugun emaitzak erakusten ditu. Ikus dezakegunez, k = 2 kasuan lortzen

ditugu emaitza hoberenak VISORCond metrikan. Beraz, k = 2 erabili dugu gure

lanean zehar.
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