Automatic Thread Classification for Linux User Forum Information
Access

Timothy Baldwin, David Martinez, Richard B. Penman

CSSE
University of Melbourne
VIC 3010 Australia

{tim,davidm, rbp}@csse.unimelb.edu.au

Abstract We experiment with text classification of
threads from Linux web user forums, in the context
of improving information access to the problems and
solutions described in the threads. We specifically
focus on classifying threads according to: (1) them
describing a specific problem vs. containing a more
general discussion; (2) the completeness of the initial
post in the thread; and (3) whether problem(s) in
the initial post are resolved in the thread or not.
We approach these tasks in both classification and
regression frameworks using a range of machine
learners and evaluation metrics.

Keywords Web Documents, Document Management

1 Introduction

Due to the sheer scale of web data, simple keyword
matching is an effective means of information access
for many informational web queries. There still
remain significant clusters of information access
needs, however, where keyword matching is less
successful, due to a combination of factors including:
overly-specific information needs (e.g. as specified
in technical queries such as kswapdO hogs cpu
"Slackware 10.0" "windows XP" vmware '"no

swapping"); low density of relevant documents (e.g.
for monolingual queries in low-density languages such
as Uighur, or over domains with little web presence);
the inability of keyword queries to handle data ranges
(e.g. Dell laptop $1000-1500); and information
streams spanning multiple documents, with no
complete description of the contained information in
any one of the documents (e.g. as occurs in logs of
mailing lists). While query expansion and document
normalisation can go some way towards ameliorating
the first two effects [8, 2], the third question of
querying and reasoning over data ranges tends to point
to the need for some form of information extraction
and semantic normalisation of the document content,
and the final question of document segmentation

Proceedings of the 12th Australasian Document Com-
puting Symposium, Melbourne, Australia, December 10,
2007. Copyright for this article remains with the authors.

requires some form of meta-document identification or
threading.

In this paper, we are concerned with information
access in the domain of Linux troubleshooting, based
on Linux web user forum data. Consider the following
scenario:

Kim, a Debian GNU/Linux user, notices
that as a result of the latest upgrade on
her laptop, she can no longer start up the
GNOME desktop environment. She goes to
Google to troubleshoot the problem and tries
inputting the version details of various X
packages and the hardware particulars of
her laptop, along with different combinations
of keywords such as broken, not working
and won’t start; all of the top-ranking
hits are either outdated and inapplicable to
the latest version packages, or irrelevant to
the task at hand. She checks the archives
of a selection of relevant-sounding Debian
mailing lists without luck. Finally after
searching the web for 2 hours she stumbles
across a series of pages describing an error
with gtk and the method for correcting the
problem.

This example (based on real-world experience) is
intended to illustrate the fact that, while web search
engines such as Google are remarkably successful at
locating individual documents/sites typifying a well-
defined information type, they have shortcomings in:
(1) tracking data streams spanning multiple documents
as found, e.g., in mailing list archives; (2) identifying
documents associated with particular (ranges of)
distribution or package versions, or identifying minor
vs. major version changes in a given package; and (3)
predicting acceptable lexical variance between a query
and a document (e.g. between broken and error).
Our proposed alternative to conventional (web-
based) information retrieval over Linux data is the
ILIAD (Improved Linux Information Access by Data
Mining) system which trawls the main English-based
Linux web forums throughout the world, analyses each
thread to arrive at a conceptual representation specified
for the package, version and system information, and

72

pre-classified according to the particular problem
type. Further, we aim to distill the evolution of the
proposed solutions and diagnostics in a given thread
into a single succinct list of factoids, and the various
threads on the web pertaining to a particular problem
into a single ranked list of possible solutions, with links
to the original web data. Access to this information
then takes the form of a web interface where the user
selects the type of problem experienced (e.g. some
component of a package is broken or the user wishes to
configure a package in a particular way), the package
or component type that is applied to (e.g. emacs or
the X window system in general), and (optionally) the
system and hardware configuration (e.g. Debian 3.1, or
ALSA 1.1 on a ThinkPad X60), and the system returns
information relevant to that query in a pre-distilled
form for easy application. This paper describes the
first tentative steps towards this goal, in performing
thread-level estimation of the utility of a given thread
for troubleshooting purposes.

2 Related work

Recently there has been growing interest in the
automatic processing of discussion-based information
sources, such as mailing lists or web forums. However,
there is little work that focuses specifically on thread-
level classification. Most related work in this area relies
on speech acts to annotate utterances in the discussion,
such as the approaches in [5] and [4]. Here, speech
acts such as question and elaboration are detected
and applied in different tasks, including identifying
the roles of participants, finding unanswered threads,
predicting what type of response would be appropriate
in a given context, and question answering.

Another related line of research is on discussion
summarisation, to provide only the most relevant
information to the user. An example of this kind of
work can be seen in [9], where a system is developed
to summarise technical online IRC (Internet Rely
Chat) discussions by clustering message segments and
finding the most relevant parts using machine learning
methods.

Regarding the classification of threads, [6] present
an evaluation of automatic assessment of the post qual-
ity of online discussions of software. Their approach is
related to our methods, and they rely on quality assess-
ment from online users to train and test their classifiers.
Using different types of features they are able to build
systems with high performance for their task. Their
motivation is also to deliver information to end-users
in a more effective way.

3 Data description

There is a vast range of forums, newsgroups and
mailing lists available on the web that cover different
aspects of the Linux domain, from general discussions
to very specific applications. For our purposes, we

chose to target well-known, active forums, including
sites that are specifically devoted to Linux (e.g.
LINUXQUESTIONS and FEDORAFORUM) and general-
domain resources that contain Linux-specific sections
(e.g. EXPERTS EXCHANGE and GOOGLE GROUPS).
In the interests of maximising the proportion of
troubleshooting-related threads, we focused primarily
on two main resources: Linuxquestions,! and a
subset of the Debian mailing lists.> From those we
further selected three specific subforums intended
to include a representative range of both general-
purpose and hardware/package-specific forums,
namely Linuxquestions-software, Debian-amdé4, and
Debian-apache as our data sources.

We crawled the data from these forums using ded-
icated software tailored to the VBulletin® forum man-
ager (for Linuxquestions) and the pipermail web log (for
the Debian mailing lists). In order to extract the relevant
information from the documents we analysed the table
structure of the VBulletin forums and the header struc-
ture of the pipermail web logs. We required specific
rules to identify quotations in the posts, which were rep-
resented with special codes as formatted text in XML.
This software has also been used to crawl data from
other resources (e.g. FEDORAFORUM).

Each of the forums was then stored in a MySQL
relational database. We designed a common represen-
tation for the discussion lists, based on forums, threads,
and posts:

Forum: the source forum, namely Linuxquestions-
software, Debian-amd64 or Debian-apache.

Thread: each thread is linked to a given forum, and
stored with a title, author, date, and flag (e.g. sticky

post).

Post: each post is related to a thread and forum. We
also register its title, position in the thread, date,
which post it follows (for nested threads), raw text,
and formatted text.

We filtered out threads containing only one post and
those containing more than 14 answers to the original
post. Obviously threads with no answers cannot
provide problem solutions, and long threads tend to
be more discussion related (e.g. discussing the relative
merits of different distributions or packages) and/or
contain too much information for accurate processing.
For Linuxquestions we also removed those threads
flagged as “sticky” because they usually contain polls
and discussions.

After filtering, our data collection contains more
than 380,000 posts spanning 90,000 threads. The
detailed statistics of the crawled data from each of the
three forums are given in Table 1. We can see that
most of the data comes from the Linuxquestions forum,

"http://www.linuxquestions.org
2http://1lists.debian.org/completeindex.html
Shttp://www.vbulletin.com

73

Linuxquestions Debian-apache Debian-amdé4 | Overall
Years 2000-2007 2001-2006 2003-2006
Threads 80,814 5,251 4,364 90,429
Posts 352,677 8,063 19,670 380,410
Users 42,622 3,484 2,305 48,411
Average posts per thread 4.36 1.54 4.51 4.21
Average posts per user 8.27 2.31 8.53 7.86

Table 1: Details of the forum data

which is the one with the most users. Also, we can
notice a clear difference in the length of threads for the
two Debian subforums.

4 Task descriptions

The first step in extracting information from the threads
is to identify which threads are more relevant in the con-
text of troubleshooting. There are different characteris-
tics of a thread that can make it less useful, including:
it may not refer to a specific problem; the thread may
be unsolved; or the description of the problem may be
unclear. For this work we detected 5 characteristics that
are important in profiling the predicted troubleshooting
utility of a given thread:

Task orientation: is the thread focused on solving a
specific problem or devoted to a more general dis-
cussion on some topic?

Completeness: does the initial post include a
sufficiently detailed specification of the problem
for a third party to be able to realistically provide
a solution?

Solvedness: is there a documented solution to the
original problem described by the thread initiator
in the thread (including the possibility of URLs
pointing off to solutions elsewhere on that same
forum or generally on the web)?

Spam: is the thread spam?

Problem type: free text keyword description of
the type of problem described (e.g. software
installation).

We hand-annotated a subset of the thread collection
in order to get a better understanding of the data
and train thread-level classifiers over. 250 threads
were annotated independently by three annotators, in
terms of the 5 thread-level features described above.
The threads were chosen randomly from across the
three forums. For the “Problem type”, we allowed the
annotators to either choose from a pull-down list of tags
from previously-annotated threads, or alternatively to
enter a free-text description for the current thread. This
information is not used in the experiments described
in this paper. Similarly, our simple filtering of threads
based on the number of posts removed all spam from

our 250 thread sample, such that the “Spam” task is
also not a relevant task for the current dataset.

The annotators were asked to rate the “Task orienta-
tion”, “Completeness” and “Solvedness” of each thread
based on a five point scale, with a score of 1 indicating a
high degree of fit with the given designation, and a score
of 5 indicating a low degree of fit. The mean numeric
value across the 3 annotators was used to derive the
gold-standard value for each of the three tasks. For the
majority of our experiments, we convert the numeric
score into a binary value, using 2.5 as our breakpoint.
The annotation process took between 5.7 and 8.7 hours
depending on the annotator.

We measured the inter-tagger agreement for the 3
different tasks using the Spearman rank correlation and
the Kappa statistic. Rank correlation was calculated
between each annotator and the mean value, and for
the Kappa statistic we converted the 5-way scores into
3-way values (positive, neuter and negative) and com-
puted the agreement between the 3 annotators. The
reason for calculating the rank correlation in addition
to the Kappa statistic is that Kappa is incapable of cap-
turing the fact that the rating scale is ordinal, and treats
a 4 vs. 5 rating difference equally to a 1 vs. 5 rating
difference, where there is clearly higher agreement in
the first instance; rank correlation is better equipped to
model this difference, by viewing the rating according
to its relative position in the ranking rather than the raw
numbers.

Table 2 shows the inter-tagger agreement for the
three tasks.

We can see that the Kappa values are low, indicating
that there is low agreement relative to the label bias
of the task, and that the classifiers may have problems
with the three-way classification task. However, the
high rank correlation shows that, while the individual
annotators may have interpreted the raw numbers on the
5-point scale differently, there is general consistency in
terms of what they considered to be more or less task
oriented, complete or solved. We approach the task
in both classification and regression terms in order to
explore both the “direct hit” discrete view of the data
as performed by the annotators, and the ordinal view of
the data represented in the ranking (mapping the real-
valued outputs of the regression model onto a ranking).

74

Test Task Orientation Completeness Solvedness
Rank Correlation Al/mean 0.94 0.86 0.71
Rank Correlation A2/mean 0.94 0.81 0.82
Rank Correlation A3/mean 0.90 0.85 0.79
3-way kappa 0.64 0.21 0.38

Table 2: Agreement statistics: rank correlation between each annotator and the mean, and the 3-way Kappa statistic

5 Features

In order to represent the threads for our classifiers and
regression models, we defined two common sets of fea-
tures to use for all three tasks. As the baseline feature
set we constructed simple bag of words (BoW) fea-
tures, consisting of all the words occurring in each of
the threads. The second feature set (THREAD) relies on
the thread structure and specific contextual features for
the representation. We identified four subparts of the
thread that appear to contain different types of informa-
tion, and are expected to impact differently on each of
three thread classification tasks:

Initial Post (INITIALPOST): the first post of the
thread, which contains the original problem
description; we also include the immediately
proceeding posts (based on the chronological
order of the posts) if they were authored by the
same user, as they usually constitute clarifications
or supplementary information. This part of the
thread is expected to be particularly relevant to
both the “Task Orientation” and “Completeness”
tasks.

First Response (FIRSTRESPONSE): the first post in
the thread belonging to a user other than the ini-
tiator; expected to be relevant for all three tasks.

All Responses (ALLRESPONSES): the remaining
posts in the thread after removing the two sets
above; expected to be relevant for the “Task
Orientation” and “Solvedness” tasks.

Final Post from the Initiator (FINALPOSTINIT):
the final (sequence of) post(s) from the thread
initiator after the initial post, i.e. in response
to a post from someone else; expected to be
particularly relevant for the “Solvedness” task.

From each of these sets we extracted a group of 18
lexical and contextual features, as defined in Table 3.
Below, we denote each of these 4 threads subparts with
the indicated acronyms (i.e. INITIALPOST, FIRSTRE-
SPONSE, ALLRESPONSES and FINALPOSTINIT), and
the union of these groups as THREAD.

Apart from the intra-thread features, there are other
forum-level features that are indicative of the rating of a
given thread according to the three classification tasks,
such as the particular users that initiate/respond to the
threads, or the number of external links pointing to the

target thread. We plan to analyse these feature types in
the future.

6 Machine Learners

In our experiments, we used three different machine
learning software packages to build our classifiers and
regression models:

SVMLIB [1]: an integrated toolkit for support vector
machine classification, regression, and distribution
estimation (one-class SVM). For our experiments
we used the classification and regression modules,
relying on an RBF kernel in each case.

TIMBL [3]: a fast implementation of a number of
variants of the k-nearest neighbour algorithm, out
of which we use an extended version of IB1.

WEKA [7]: a suite of machine learning and regression
algorithms for data mining tasks. From the suite
of algorithms, in our experiments we applied
the following classification algorithms: JRIP,
J4.8 decision trees, support vector machine
with a linear kernel (SVM), naive Bayes (NB),
ADABOOSTMI1, BAGGING and STACKING;
and the following regression algorithms: linear
regression (LM) and PERCEPTRON.

7 Evaluation

In this section, we describe our experiments on the three
different thread classification tasks. First we present our
experimental setting, and then we analyse the results
of the different feature sets for two classifiers. Next,
we report on the classification accuracy of the different
models in binary classification terms, and also rank cor-
relation for the regression models. Finally, we present
learning curves to shed light on the relationship be-
tween the amount of training data and our relative re-
sults.

7.1 Experimental setting

For all our experiments on the 250 thread dataset, we
performed stratified 10-fold cross-validation. For the
main classification tasks we binarised the 1-5 values
given by the three annotators into positive and negative
instances relying on the mean of the scores. We decided
to remove the few cases where the mean of the three
annotators’ ratings was exactly at the midpoint of the 5-
point scale (i.e. 3). This left us with 244 threads for the

75

Feature Description Feature Type
Number of posts Integer
Number of Linux distribution mentions (e.g. redhat) Integer
Number of beginner keywords mentioned (e.g. noob) Integer
Number of emoticons detected (e.g. :-)) Integer
Number of version numbers mentioned (e.g. version 5.1) Integer
Number of URLs detected (e.g. www.ubuntu.org) Integer
Proportion of words relative to full thread Real
Proportion of sentences relative to full thread Real
Proportion of question sentences in set Real
Proportion of exclamation sentences in set Real
Proportion of simple declarative sentences in set Real
Proportion of code sentences in set Real
Proportion of other sentences in set Real
Average sentence length Real
Average word length Real
Proportion of sentences to first question Real
Proportion of thread posts to first class post Real
Proportion of thread posts to last class post Real

Table 3: Lexical and contextual features extracted for each of the 4 thread subparts

“Task Orientation” task, 232 for the “Completeness”
task, and 222 for the “Solvedness” task. For the rank-
correlation evaluation we used all 250 threads for each
task.

We measured accuracy values for the classification
experiments. As our baseline we used a majority class
(MC) classifier that assigns the majority class in the
training data to all test instances.

7.2 Feature sets

For our first experiment we analysed the performance
of binary classifiers over the different feature sets. This
gives us an indication of whether the THREAD features
provide an enhancement over the classic BOW model.
We further contrast this with the combination of the two
feature sets (All) to determine whether they are comple-
mentary. At this stage of our experiments, we focused
exclusively on two learners: TIMBL and SVMLIB.

The results for TIMBL are shown in Table 4. We
can see that the contribution of the feature sets differs
across the three tasks, but that the performance is lower
than our MC baseline in most cases. The most signif-
icant drop occurs for BOW in the “Solvedness” task,
while the other feature sets are more stable across dif-
ferent tasks.

The results for SVMLIB are given in Table 5. Here
the system performs at the same level as the MC base-
line in most cases. There is a slight increase is the
“Solvedness” task performance for some of the feature
sets, and a small decrease for the THREAD feature set,
but overall, the classifiers mirror the performance of the
baseline.

Looking over the results for the three tasks across
the different feature sets, we find that with TIMBL
there is partial agreement with our expectations of

which thread subparts would be most predictive of
the three classification tasks. We also can see that
particularly for the “Solvedness” task, the THREAD
features provide useful information not present in
the simple BOW features, or at the very least that
the performance with the THREAD features is more
consistent than with the BOW or All features. For the
remainder of our experiments, therefore, we use the
THREAD features exclusively.

7.3 Binary Classification and Rank Cor-
relation

For our next experiment we applied the extra learners
from the WEKA toolkit to the THREAD feature set to
compare their performance with that of TIMBL and
SVMLIB. The results of these experiments are given
in Table 6. We can see that the overall results are low,
and that in most cases the simple MC baseline obtains
the highest result. Only for the “Solvedness” task do we
achieve above-baseline results, using JRIP and STACK-
ING.

We analysed the cause of the unexpectedly low per-
formance of our classifiers, looking first at the binarisa-
tion of the tasks. In the annotation phase we observed
low Kappa scores among the annotators, but consid-
erably higher rank correlation. This suggests that the
relative ordering of the ratings for the annotators is con-
sistent but there is disagreement in the absolute num-
bers they use. Thus, the binarisation of the task could
be one of the causes of the low performance of the
classifiers, as the break point between classes may be
hard to determine.

Another way to process the threads is to establish
a ranking using regression models or classification
weights. This allows us to measure the rank correlation

76

77

Features Task Orientation Completeness Solvedness
MC 0.816 0.948 0.765

Bow 0.820 (0.032) 0.935 (0.021) 0.279 (0.171)
INITIALPOST 0.713 (0.072) 0.918 (0.039) 0.703 (0.077)
FIRSTRESPONSE | 0.746 (0.106) 0.905 (0.037) 0.685 (0.069)
ALLRESPONSES 0.734 (0.080) 0.909 (0.030) 0.734 (0.072)
FINALPOSTINIT 0.668 (0.104) 0.879 (0.045) 0.667 (0.073)
THREAD 0.762 (0.064) 0.914 (0.033) 0.653 (0.058)
All 0.820 (0.031) 0.935 (0.028) 0.401 (0.147)

Table 4: Accuracy for TIMBL using the different feature sets (standard deviation given in parentheses; best results

are shown in bold)

Features Task Orientation Completeness Solvedness
MC 0.816 0.948 0.765

Bow 0.816 (0.027) 0.948 (0.016) 0.779 (0.026)
INITIALPOST 0.816 (0.018) 0.948 (0.016) 0.779 (0.026)
FIRSTRESPONSE 0.816 (0.025) 0.948 (0.016) 0.779 (0.036)
ALLRESPONSES 0.816 (0.026) 0.948 (0.016) 0.779 (0.031)
FINALPOSTINIT 0.816 (0.024) 0.948 (0.016) 0.788 (0.031)
THREAD 0.807 (0.026) 0.948 (0.016) 0.757 (0.041)
All 0.816 (0.024) 0.948 (0.016) 0.779 (0.031)

Table 5: Accuracy for SVMLIB using the different feature sets (standard deviation given in parentheses; the best

results are shown in bold)

between the gold standard values and the predictions.
We performed these experiments by applying two
regression models (linear regression and SVM) and
two classifiers with weighted predictions. We tested
different kernel types for SVM with small differences
in performance, and report here the results for linear
kernels. We measured the Spearman rank correlation
between the gold standard weights and the predicted
values, and present the results in Table 7.

The results are still lower than the simple MC base-
line. Linear regression performs better than the other
approaches, but still significantly below the baseline.
Therefore the low correlation suggests that determining
the boundary is not the only problem with this dataset.

7.4 Learning Curves

In this analysis we explored whether the hand-
annotated data was sufficient in quantity to successfully
train the classifiers. Thus, we tested the effect of using
different amounts of training data, ranging from 20%
to 100% of the total training set. We present the results
for the SVMLIB classifier and the linear regression
model from WEKA. The performance for SVMLIB
is given in Figure 1. We see that there is not a clear
improvement in the results as the quantity of training
data increases. This suggests that even with more data
we do not expect much success from SVMLIB for the
different tasks.

The linear regression results are given in Figure 2.
In this case the introduction of more training data in-

100__
9
Acc.
70
60
50 :

o e Sy g S—

Task —6— |
Comp. -+ - |

‘Solv.‘ —E‘I—

20 30 40 50 60 70 80 90 100
Training Data

Figure 1: Learning curve for SVMLIB

100

90F

80
Acc.
70(]

60

S I S

“+ T

Task —6— |
Comp. - -+ -

‘Solv.‘ —E‘I—

50
20

30 40 50 60 70 80 90 100

Training Data

Figure 2: Learning curve for linear regression

creases the accuracy of the system. This indicates that
the regression model could benefit from extra annotated

data.

System Task Orientation Completeness Solvedness
MC 0.816 0.948 0.765
TIMBL 0.762 0914 0.653
SVMLIB 0.807 0.948 0.757
JRIP 0.807 0.948 0.770
J4.8 0.717 0.948 0.685
SVM 0.783 0.940 0.765
PERCEPTRON 0.729 0.909 0.721
NB 0.734 0.741 0.641
LM 0.791 0.944 0.739
ADABOOSTMI1 0.799 0.931 0.730
BAGGING 0.811 0.948 0.766
STACKING 0.816 0.948 0.779

Table 6: Accuracy for all classifiers using THREAD feature-set (best result per column shown in bold)

System Task Orientation Completeness Solvedness
MC 0.54 0.53 0.51
LM 0.14 0.40 0.37
SVM-REGRESSION 0.12 0.32 0.25
SVM-CLASSIFICATION 0.18 0.10 0.18
JRIP 0.08 0.22 0.04

Table 7: Spearman rank correlation between goldstandard and different models (best result per column shown in

bold)

8 Discussion

The empirical results showed the problems in both the
classification and regression frameworks. We observed
that our annotation scheme produced low Kappa agree-
ment, and this reflected on the performance of the clas-
sifiers, causing them to perform at or below the base-
line. We had higher hopes in the regression experi-
ments, because the rank correlation between annota-
tors was higher, but the regression models did not show
much improvement.

In order to test the classifiers in the same setting
as the original annotation, we also explored the results
of classifiers on 5-way classification. We observed
that in this case the performance was clearly above the
MC baseline for the “Completeness” and “Solvedness”
tasks. This classification would be potentially useful
to help rank threads to present to the user. This
5-way annotation task highlighted the problem of the
boundary (i.e. mid-range) cases, which were difficult
to detect for the classifier and contributed most of the
erTors.

Another problem that was not addressed in the
experiments was the relationship between the different
tasks. For instance, if a thread is considered discussion
oriented (in terms of the “Task Orientation” task),
the annotation of “Solvedness” should be different
from a specific-task oriented thread. We performed
an experiment to measure the results using different
subsets of data from the gold standard annotation
(e.g. measure “Solvedness” and “Completeness” in

task-oriented threads only). The results show only
slight increases over the MC baseline, suggesting that
partitioning the data in a hierarchical approach would
not completely solve the problem.

All in all the experiments show the complications in
automatising these tasks. The results indicate that au-
tomatic methods can be developed to identify the most
clear-cut cases and provide rankings of threads, but for
most cases the results are below the MC baseline. It is
worth mentioning that the baseline is very high (94.8%)
in the case of “Completeness”, and this makes it diffi-
cult to improve over. The majority class is also high for
the other two tasks (77.9% and 81.6%).

9 Conclusion

In this work we present the ILIAD project for infor-
mation delivery in the Linux domain, and the first ex-
ploration of utility-based classification of threads from
different sources. For our main goal of providing bet-
ter information-access tools, we developed software to
crawl and normalise data from different mailing lists
and forums. We used these tools to create a collection
of more than 90,000 threads addressing different prob-
lems.

After analysis of a sample of threads, we identified
some relevant characteristics that could be useful to de-
liver the information. We defined the “Task orienta-
tion”, “Completeness”, and “Solvedness” as the object
of study for this paper, and annotated a subset of threads
on their having these characteristics. We then devel-

78

oped automatic methods to classify threads according
to these dimensions.

Our experiments highlighted some of the problems
to carry out these tasks automatically. The low Kappa
agreement between annotators lead to difficulties to
train systems for binary classification. However, there
was higher rank correlation, and this suggests that we
can develop systems to rank threads according to their
characteristics.

We are currently working on extending our feature
set to include other types of features, such as the authors
of the posts and the external links pointing to target
threads. We are also applying and evaluating these tech-
niques in an IR framework. Our aim in this task is to
measure the contribution of devoted tools over general
keyword-based search. For future work we plan to de-
velop tools to process the content of the threads, and
extract the relevant information for delivery.

Acknowledgements This research was carried out
with support from Australian Research Council grant
no. DP0663879.

References

[1] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library
for support vector machines, 2001. Software available at
http://wuw.csie.ntu.edu.tw/ “cjlin/libsvm.

[2] Hang Cui, Ji-Rong Wen, Jian-Yun Nie and Wei-Ying
Ma. Probabilistic query expansion using query logs. In
Proceedings of the 11th International Conference on the

World Wide Web, pages 325-332, Honolulu, USA, 2002.

Walter Daelemans, Jakub Zavrel, Ko van der Sloot and
Antal van den Bosch. Timbl: Tilburg memory based
learner, version 5.1, reference guide. Technical report,
ILK University of Tilburg, 2004.

(3]

[4] Edward Ivanovic. Dialogue act tagging for instant
messaging chat sessions. In Proceedings of the ACL
Student Research Workshop, pages 79-84, Ann Arbor,

USA, 2005.

[5] Jihie Kim, Grace Chern, Donghui Feng, Erin Shaw and
Eduard Hovy. Mining and assessing discussions on the
web through speech act analysis. In Proceedings of the
ISWC’06 Workshop on Web Content Mining with Human

Language Technologies, Athens, USA, 2006.

[6] Markus Weimer, Iryna Gurevych and Max Miihlhéuser.
Automatically assessing the post quality in online discus-
sions on software. In Proceedings of the 45th Annual
Meeting of the Association for Computational Linguistics
Companion Volume Proceedings of the Demo and Poster

Sessions, pages 125-128, Prague, Czech Republic, 2007.

Ian H. Witten and Eibe Frank. Data Mining: Practical
machine learning tools and techniques. 2nd Edition,
Morgan Kaufmann, San Francisco, USA, 2005.

Jinxi Xu and W. Bruce Croft. Query expansion using
local and global document analysis. In Proceedings of
the 19th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval,
pages 411, Zurich, Switzerland, 1996.

(7]

(8]

[9] Liang Zhou and Eduard Hovy. Digesting virtual geek
culture: The summarization of technical internet relay
chat. In Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics (ACL’05),
pages 298-305, Ann Arbor, USA, 2005.

79

