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Edari maitagarria,
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mutuba ipintzen kantan,
eta errena dantzan.
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Ardoari jarritako hitz neurtuak — Aita Meagher (1703-1772)

And you know the sun’s settin’ fast
And just like they say nothing good ever lasts

. . .
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Dediqué mi libro
a una niña de un año,

y le gustó tanto,
que se lo comió.

Gloria Fuertes (1917-1998)



iv



Acknowledgements

I must say I would never finish this work without the help of some people,
and I would like to mention them:

• Lehenik eta behin, nire sustengu pertsonal izateagatik, etxekoak aipatu
nahi ditut: Aita, ama, Endika eta Garazi. Zuek gabe ez bainuke hau
egingo, inondik inora ere.

• Eta zer egin inon lagunik gabe? Ezin zuek agurtu gabe geratu, Oier
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CHAPTER I

Introduction

I.1 Motivation

O Captain! my Captain! our fearful trip is done,
The ship has weather’d every rack, the prize we sought is won,
The port is near, the bells I hear, the people all exulting,
While follow eyes the steady keel, the vessel grim and daring;

But O heart! heart! heart!
O the bleeding drops of red,

Where on the deck my Captain lies,
Fallen cold and dead.

. . .

My Captain does not answer, his lips are pale and still,
My father does not feel my arm, he has no pulse nor will,
The ship is anchor’d safe and sound, its voyage closed and done,
From fearful trip the victor ship comes in with object won;

Exult O shores, and ring O bells!
But I with mournful tread,

Walk the deck my Captain lies,
Fallen cold and dead.

The above poem is entitled Oh captain! My captain!, and is one of the
most well-known poems written by American poet Walt Whitman in honor
of Abraham Lincoln. In this poem there are some moments in which rhythm
plays an important role, such as “The port is near, the bells I hear, . . . ”, or
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also “our fearful trip is done” and “his lips are pale and still”. This rhythm,
created by repetitive patterns, can evoke specific emotion in people. It can
make the difference between a regular discourse or a memorable discourse.
Consider Barack Obama’s speech following his victory in the Iowa caucus in
2008. The recurrent DEH-DUM-DEH-DUM-. . . rhythm heard in the speech
is by no means fortuitous.

They said this day would never come.
They said our sights were set too high.

. . .

The slogans “Yes We Can” and “Change We Need” used by Barack Obama
are not so memorable purely by chance, neither is “Free at Last”, recited by
Martin Luther King.

In the above example by Walt Whitman, the rhythm of the stanza is
repeated throughout the three stanzas. But usually, each line’s sound se-
quence is repeated across lines. This pattern of recurrence is called meter.
Let us consider a stanza from Lewis Carroll’s Jabberwocky poem [Carroll,
1982]:

One, two! One, two! And through and through
The vorpal blade went snicker-snack!

He left it dead, and with its head
He went galumphing back.

Scansion involves marking the rhythmic structure of a poem, marking the
units that are emphasized when the poem is read aloud. Those emphasized
sound units appear recurrently, such as, the DEH-DUM pattern from “he
left it dead” or the ending of some lines (snack and back). If we scan this
poem, then, we will have encoded all that information.

One, two!‖ One, two!‖ And through‖ and through
The vor‖pal blade‖ went snick‖er-snack!

He left‖ it dead,‖ and with‖ its head
He went‖ galum‖phing back.

The syllables that are marked with bold font in the lines (two, through,
vor, blade, . . . ) are stressed and the others are unstressed. As previ-
ously mentioned, there is a repetitive sequence of DEH-DUM, or unstressed-
stressed, sounds. This grouping is called a foot. The repetition of a sound
at the end of some lines is called rhyme. Although scanning a line of poetry
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involves all these characteristics, in this work I focus mainly on the rhythm
found in the syllable stress patterns.

As rhythm affects readers of poetry, so it plays a key role in the expe-
rience of listening to music. For example, if we listen the song Leroy An-
derson’s “The Typewriter” and Antonin Dvorak’s “New World Symphony’s
Largo”, feelings are very different. In music, rhythm is one of the aspects
that contribute to the emotions to be transmitted, together with pitch, tim-
bre, texture and so on. In a similar way that different kinds of music create
different feelings, so too do different poems. Of course, poets have other
poetic devices to convey meaning, such as alliteration, rhymes, repetition of
syntactic elements, among others.

But, what is the value of poetry scansion? Imagine that we have to decide
whether the author of a poem is Shakespeare or Dr. Seuss.

Then I went for the eggs of a Long-Legger Kwong.

Now this Kwong . . . well, she’s built just a little bit wrong,

For her legs are so terribly, terribly long

That she has to lay eggs twenty feet in the air

And they drop, with a plop, to the ground from up there!

So unless you can catch ’em before the eggs crash

You haven’t got eggs. You’ve got Long-Legger hash.

If we scan this poem for its rhythmic structure, we will easily realize
the high number of DEH-DEH-DUM sound patterns (“Then I went for the
eggs. . . ”, “And they drop, with a plop, to the ground . . . ”). By knowing this,
we could easily discard Shakespeare as the author of the poem as Shake-
speare wrote his poetry generally using iambic meter (DEH-DUM sound
pattern). In fact, this excerpt is from Dr. Seuss’ book Scrambled Eggs Su-
per! [Seuss, 1953].

In this work I try to automatically assign each of those ”DEH” or ”DUM”
sounds to each syllable. However, which pieces of information are relevant in
order to assign stresses to syllables in English poems? This is an important
question I aim to answer. Going further, if the elements of the language that
describe stresses in English are known, is it possible to scan (analyze) poems
in other languages using such elements?

For example, let us consider this excerpt from the Sonnet XXIII by
Garcilaso de la Vega:

En tanto que de rosa y azucena
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se muestra la color en vuestro gesto,

y que vuestro mirar ardiente, honesto,

enciende al corazón y lo refrena.

If we were to mark the stresses in the poem, we would mark them in this
way:

En tanto que de rosa y azucena

se muestra la color en vuestro gesto,

y que vuestro mirar ardiente, honesto,

enciende al corazón y lo refrena.

Following a notation typically used in poetry scansion, we would mark
stressed syllables with a slash symbol (/) and the unstressed ones with the
letter x:

En tan to que de ro sa y a zu ce na
x / x x x / x x x / x

se mues tra la co lor de vues tro ges to
x / x x x / x x x / x

y que vues tro mi rar ar dien te ho nes to
x x x x x / x / x / x

en cien de al co ra zón y lo re fre na
x / x x x / x x x / x

I.2 From marking stresses to finding structure in raw text

Labeling sentences is a common task in Natural Language Processing (NLP).
This task can be as simple as marking the part-of-speech tags in a sentence.

pronoun noun verb adjective
My dog is brown

And, it can be made harder by marking the whole groupings from a
sentence, such as, “My dog” as a noun phrase. This leads to a richer analysis,
for instance:

noun-phrase verb preposition location
My friend is from Eastwood
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Yet, this analysis may not be quite so simple. How do we know that
Eastwood is referring to a location, and not to a surname? We can deduce
this information by looking at the surrounding elements, or the context (“My
friend is from . . . ”).

Poetic scansion can be done in a similar way, using computational tech-
niques. As previously, the context is helpful for scansion too. For example,
consider the first two lines from Paradise Lost, by John Milton:

No more of talk where God or Angel Guest
With Man, as with his friend, familiar us’d

The even syllables of the first line —more, talk, God, An- and guest—for
most readers tend to appear naturally prominent. These beats usually cor-
respond to nouns, verbs, adjectives and adverbs. The problem arises when
tagging the second line:

No more of talk where God or An- gel Guest
x / x / x / x / x /

With man, as with his friend fa mi liar us’d
x / x ? x / x / x /

In the second line, the second occurrence of the word with does not
sound like a stressed word, but by looking at the context (previous and next
stresses, previous line) it seems to be a stressed syllable. Identifying the
important aspects that contribute to English poetic scansion—words natural
prominence, POS-tag, among others, is one of the goals of this thesis.

If a principled way of marking the prominences in English poems can be
defined, can this be applied to other languages, such as Spanish? Consider
this excerpt from the poem “Fue una clara tarde, triste y soñolienta” by
Antonio Machado:

Adiós para siempre la fuente sonora,
del parque dormido eterna cantora.
Adiós para siempre; tu monotońıa,

fuente, es más amarga que la pena mı́a.

Instinctively, the first two lines have a clear DEH-DUM-DEH sound pat-
tern,

Adiós para siempre la fuente sonora,
del parque dormido eterna cantora.
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but this is interrupted in the third line (“Adiós para siempre; tu monotońıa”).
This poses an intriguing question; should we mark the stresses as “monotonia”?

Finally, without resorting to linguistic information nor previous anno-
tations, is it possible to tag a poem? Can we find structure in raw text?
Consider extracts of these two poems, the first from “Ash wednesday” by
T.S. Elliot and the second from “Ni naiz” by Xabier Lete (in Basque):

. . .
Because I do not hope to know again
The infirm glory of the positive hour
Because I do not think
Because I know I shall not know
The one veritable transitory power
Because I cannot drink
There, where trees flower, and springs flow, for there is nothing again

. . .

. . .
Ni naiz
erreka zikinen iturri garbiak
aurkitu nahi dituen poeta tristea.
Ni naiz
kaleetan zehar neguko eguzkitan
lanera dijoan gizon bakartia.
Ni naiz
lorerik gabe gelditzen ari den
ardaska legorra,
ni naiz
pasio zahar guztiak kixkali nahi dituen
bihotz iheskorra.

. . .

In the first poem, similar structures such as “Because I do not hope”,
“Because I do not think” and “Because I cannot drink” are repeated through-
out the poem. In the second one, “Ni naiz” is continuously repeated, struc-
turing the whole poem, and sounds are analogous in “poeta tristea”, “gizon
bakartia”, “ardaska legorra” and “bihotz iheskorra”.

With this goal in mind, I first analyze poems in English using a rule-
based system. After that, some statistical methods that rely on tagged data
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have been developed. The interest in empirical methods arises from the fact
that in order to create these models we only need tagged data, and not
linguistic knowledge. Using the same methodology and information, I study
how empirical systems can be extrapolated to any language so as to deter-
mine their applicability. Finally, I have also performed various experiments
using what is called unsupervised learning, which learns directly from data
without any tagged information. As tagged data is not necessary, these last
models are the most affordable options, and also easily applicable to more
languages.

At the beginning of my investigation [Agirrezabal, 2012], our goal was
to create Natural Language Generation systems that would be able to au-
tomatically generate Basque poems, as in Manurung [2004], Gervás et al.
[2005], Greene et al. [2010], Oliveira [2012], Hartlová et al. [2013], Toivanen
et al. [2013], Gervás [2014]. We were able to create some approaches for
generation [Agirrezabal, 2012, Agirrezabal et al., 2013b, Astigarraga et al.,
2013, 2014], and then we created some of the modules required to assem-
ble a Natural Language Generation tool, including Content Determination,
choosing the best ending for a verse,. . . Due to its complexity, however, it
was not sufficient to fully produce text. I think that a better understanding
of poetry, for instance in terms of meter, will allow us to create more reliable
systems to analyze and also to generate verses. Apart from this, if the eval-
uation of computer-generated natural language is challenging, the problem
becomes even more challenging when evaluating computer-generated poems
[Lamb et al., 2016], as evaluation can be (almost) completely subjective. Re-
cent efforts in evaluation of poetry-generation toolkits using microblogging
services show that a more objective evaluation is possible [Veale, 2015].

I.3 Research questions

In this dissertation I try to answer some research questions, which I expect
to be relevant to the research community.

1. Which are the informative features when analyzing a poem and how
can we capture them?

2. Does language-specific linguistic knowledge contribute when analyzing
poetry?

3. Is it possible to analyze a poem without having information about
language? Is such analysis something that can be learnt?
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I.4 Tasks

In order to answer the above research questions, I worked following this
methodology and performing the following tasks:

• With English poetry scansion as a basis, develop an automatic poetry
scansion system for the English language, based on linguistic rules.

• Collect a corpus of written and scanned poetry in English to test the
scansion system.

• Training of data-based models using several computational tools, based
on the collected data and extended language-specific features. Use sim-
ple features and extended language-specific features.

• Collection of additional corpora in other languages and annotation
when necessary.

• Extrapolation of previous data-driven models to other languages.

• Try to infer poetic stress patterns directly from data without using
tagged information.

I.5 Structure of the thesis

The structure of the thesis is as follows: In Chapter II I first discuss, in
general, the problem of scansion and then go on to discuss the tradition
of three different languages (subsections II.1.2, II.1.3 and II.1.4). Then, in
section II.2, some previous work on automatic analysis of poetry are shown
and following this some typical approaches to sequence modeling are re-
viewed. Chapter III covers the different corpora employed for the training
and evaluation of different models and also addresses how poetic informa-
tion is encoded in these corpora. In Chapter IV I explore the algorithms
used for scansion. This chapter is divided in three main sections: rule-based
scansion (section IV.1), supervised learning (section IV.2) and unsupervised
learning (section IV.3), together with a final discussion about the presented
methods. In chapter V the performed experiments are shown together with
their actual performance in previously mentioned data and in chapter VI
I close the dissertation with a discussion, answering the research questions
and proposing some possible future directions.
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CHAPTER II

Scansion and Sequence labelling

II.1 Scansion

Scansion is a well-established form of poetry analysis which involves mark-
ing the prosodic meter of lines of verse and possibly also dividing the lines
into feet. The specific technique and scansion notation may differ from lan-
guage to language because of phonological and prosodic differences, and
also because of different traditions regarding meter and form. Scansion is
traditionally done manually by students and scholars of poetry.

There are different metrical systems within the wide range of poetic
traditions around the world. These metrical systems are:

• Quantitative meter: This is used in Greek and Latin and the patterning
corresponds to the length of the syllable.

• Syllabic meter: The number of syllables used in each line governs the
meter. This system is used in French and Japanese.

• Accentual meter: This was the most popular meter in Old English,
and it is still used in contemporary poetry. The line pattern is guided
by a regular number of stressed syllables, regardless of the number of
unstressed syllables.

• Accentual-syllabic meter: This is by far the most used meter in English
poetry, where the pattern states the number of syllables that will be in
each line and also the ordering of unstressed-stressed syllables, allowing
some variations.
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The following examples illustrate these metrical systems. An example of
a poem in quantitative meter is Virgil’s The Aeneid: Book 1, and starts as:

Arma virumque canō, Trōiae qūı pr̄ımus ab or̄ıs
Ītaliam, fātō profugus, Lāv̄ıniaque vēnit

l̄ıtora, multum ille et terr̄ıs iactātus et altō
. . .

Each of these lines follows a continuous pattern of dactylic syllable
groups1 with some possible variation. The poem sounds like “Aaarma viru-
uumque ca. . . ”. In the case of poems in syllabic meter, a common example
is the French poem “Les Fleurs du mal”, by Charles Baudelaire:

Si le viol, le poison, le poignard, l’incendie,
N’ont pas encore brodé de leurs plaisants dessins,

Le canevas banal de nos piteux destins,
C’est que notre âme, hélas ! n’est pas assez hardie.

These lines are alexandrines, and as such, must contain 12 syllables.
68% of the lines of “Les Fleurs du mal” are alexandrines and around 13%
octosyllabic [Coates, 1998]. The remaining lines contain a different number
of syllables. As it may be mentioned later in this section, Old English poetry
was written in accentual meter. An example of accentual verse written in
Old English is the epic poem “Beowulf ”, whose excerpt is shown below:

wuldres wealdend, woroldare forgeaf;
Beowulf wæs breme (blæd wide sprang),

Scyldes eafera Scedelandum in.
Swa sceal geong guma go de gewyrcean,

The lines in Beowulf follow a constant pattern of four stresses and
a caesura between two of those stresses. The last metrical system, the
accentual-syllabic, is the one followed by most poets in English, such as
William Shakespeare, Cristopher Marlowe and so on. Below a verse from
“Paradise Lost” by John Milton can be observed:

No more of talk where God or Angel Guest
With Man, as with his Friend, familiar us’d

To sit indulgent, and with him partake
Rural repast, permitting him the while

In the next sections, more thorough analyses of these accentual-syllabic
poems will be given, as the main experiments have been done in English.

1Dactyl: A pattern with a long syllable followed by two short syllables.
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II.1.1 Notation in scansion

When metrically analyzing poetry, syllable prominence can be marked using
a two-level marking, either stressed or unstressed. Some researchers, how-
ever, use a higher level marking, probably to quantify the level of prominence
in each syllable. Some examples in which different notation have been used
are provided in these lines.

A two-level notation has been used in some works, such as Fussell [1965],
Steele [1999] and the Princeton Encyclopedia of Poetry and Poetics [Pre-
minger et al., 2015]. Other authors use a three-level notation, or even a
four-level notation. Such works include Jespersen [1933], Corn [1997], Hayes
et al. [2012].

In the rule-based method a three-level notation is used internally, which
later is reduced to two levels. In data-driven methods, however, only two-
levels are used. In this dissertation, stressed syllables are marked with a
slash symbol (/) and unstressed ones with the x character, and when sec-
ondary stresses are needed the backslash symbol (\) is used. In the corpora
(presented in chapter III), stressed syllables and unstressed ones are marked
with the + and - symbols, respectively. All the corpora used in this work
are annotated with two levels.

In the following section meter in English, Spanish and Basque poetic
traditions is discussed. Some theoretical concerns about each language’s po-
etic tradition are introduced and their typical metrical structures are shown,
along with some examples.

II.1.2 Tradition in English

In this subsection English poetic tradition is discussed. In this work, when
I speak about English poetry, I do not refer only to poetry from the United
Kingdom, but to all poetry in English. There are several books that provide
a general introduction to prosody in English poetry, for example, Corn [1997]
or Steele [1999].

Different approaches for the rhythmi-metrical analysis of poetry have
been proposed [Küper, 2012], such as traditional metrics [Fussell, 1965, Fry,
2010], generative metrics [Halle and Keyser, 1971, Fabb and Halle, 2008]
(metrical grid theory), the Russian formalist school [Tarlinskaja, 2006], cog-
nitive metrics [Tsur, 2008, Lilja et al., 2012], and the optimality-theory ap-
proach [Hanson and Kiparsky, 1996].

The metrical system used in English poetry was accentual until the writ-
ings of Chaucer, considered the father of English literature. Classical exam-
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ples of accentual poetry in Old English include Beowulf and Piers Plowman.
After that until the 19th century English poetry was accentual-syllabic. Ger-
ard Manley Hopkins (with his sprung rhythm), Walt Whitman and Amy
Lowell among others, started to reduce the dominance of accentual-syllabic
verse. Nowadays, accentual poetry is present in nursery rhymes, country
poetry and rap [Gioia, 2003].

Poems in English verse have repeating patterns of syllable stresses, better
known as feet. According to the number of stresses each of these feet has,
two meter groups can be found: duple and triple meters. Duple metered
feet contain two syllables and triple metered feet will have three syllables.
Different metrical patterns are used in poetry, and below are listed some of
the most common ones in English [Baldick, 2015]:

• Iambic meter: This is a duple meter, and by far the most common me-
ter in modern English poetry, such as in Shakespeare’s sonnets [Shake-
speare, 1609]. An example of this meter would be the word “bal-loon”.

• Trochaic meter: Another duple meter, not as common as iambic me-
ter, but found in poems such as The Song of Hiawatha by Henry W.
Longfellow [Longfellow, 1855] or The Tyger by William Blake2 [Blake
and Lincoln, 1994]. The word “jun-gle” is trochaic.

• Dactylic meter: A triple meter, found in poems such as The Voice
by Thomas Hardy [Monroe, 1917] and in The Gashlycrumb Tinies
by Edward Gorey [Gorey, 1963]. The word “ac-ci-dent” follows this
stress-pattern.

• Anapestic meter: A common triple meter found in humorous or comic
poems, for example, “but I’m tel-ling you Liz” from Scrambled Eggs
Super by Dr. Seuss [Seuss, 1953] or in traditional Irish limericks.

In the following table, an example of each meter can be seen. The stresses
are marked in bold. The iambic example is from Cristopher Marlowe’s poem
“The Passionate Shepherd to His Love”, the anapestic one is from Dr Seuss’
“Scrambled Eggs Super!”, the trochaic poem is an excerpt from “The Song
of Hiawatha”, by Henry Wadsworth Longfellow, and the dactylic one from
“The Voice”, by Thomas Hardy.

2This is a trochaic poem with catalectic lines. But it could also be considered an iambic
poem with acephalous lines.
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Iambic meter Anapestic meter
Come live with me and be my love, and I don’t like to brag, but I’m telling you Liz
And we will all the pleasures prove, that speaking of cooks I’m the best that there is

That Valleys, grooves, hills and fields, why only last Tuesday when mother was out
Woods, or steepy mountain yields. I really cooked something worth talking about

Trochaic meter Dactylic meter
Can it be the sun descending Woman much missed, how you call to me, call to me,
O’er the level plain of water? Saying that now you are not as you were

Or the Red Swan floating, flying, When you had changed from the one who was all to me,
Wounded by the magic arrow, But as at first, when our day was fair.

The length of a metrical line is expressed based on the number of feet
found in the verse, thus a dimeter has two feet, a trimeter three, a tetrameter
four, and so on (pentameter, hexameter, heptameter,. . . ).

One of the most used meter in English is iambic pentameter. Let us
consider an excerpt from the Sonnet no. 18 by William Shakespeare:

Shall I compare thee to a summer’s day?
Thou art more lovely and more temperate:
Rough winds do shake the darling buds of May,
And summer’s lease hath all too short a date:
. . .

An English speaker can realize in this excerpt from a Shakespeare son-
net that there is a recurrent pattern of two syllables. Each line, as it is a
pentameter, is composed of five iambic feet. Other metrical patterns, such
as trochaic, anapestic or dactylic, are not as common as iambic meter.

Metrical variation

In the previous lines, the presented example written in iambic pentameter
which was quite clear. How a particular line of verse should be scanned,
however, is often a matter of contention. Consider a line from the poem Le
Monocle de Mon Oncle by Wallace Stevens [1923]:

I wish that I might be a thinking stone

Here, things are far less clear. This line can, for example, be analyzed
as five iambic feet, or as one iamb, followed by a pyrrhic foot,3 followed by
two stressed syllables, followed by two more iambs. The issue here is that
both analyses must be given as correct, which contrasts with typical NLP
labeling tasks, in which usually only one analysis is defined as correct. The
following represents several analyses of the line in question.

3Pyrrhic foot: Two unstressed syllables [xx].
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I wish that I might be a think ing stone
(1) x / x / x / x / x /

(2) x / x x / / x / x /

(3) x / x / / / x / x /

(4) x / x x x / x / x /

The first variant is the meter most likely intended by the author. The
second line represents the above mentioned alternative scansion. The third
and fourth lines show the output of the software tools Scandroid [Hartman,
2005] and ZeuScansion [Agirrezabal et al., 2016b], respectively.

Sometimes a line’s analysis can be different from the expected one. In
fact, well-known poems usually include some metrical variation; this is a
stylistic device to break monotony and provide elements of surprise and
variation to the reader. In the poem The More Loving One by W. H. Auden
[Auden, 1960], the poet varies the meter several times. An interesting case
in point is the following stanza

Admirer as I think I am

of stars that do not give a damn,

I cannot, now I see them, say

I missed one terribly all day

where the natural flow of the last line is scanned as two iambs and a double
iamb.4 While the poem itself is written in iambic tetrameters, this last line
illustrates the author assigning extra emphasis on the final part: all day.

The challenges of scansion

Scansion is, then, the analysis of rhythmic structure in verse. But what
makes it difficult? In the following, I discuss some of the immediate obstacles
that have to be overcome to provide accurate annotations of rhythm and
stress:

(a) Lexical stress patterns do not always apply

(b) Dividing the stress pattern into feet

(c) Dealing with out-of-vocabulary words

4Double iamb: two unstressed syllables and two stressed syllables [xx//].
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(a) Lexical stress patterns do not always apply

The primary piece of information necessary for performing metrical scansion
is the lexical stress of words. While other elements are also important, the
inherent lexical stress of a word is indispensable for the task. Consider the
first line of Thomas Hardy’s The voice [Monroe, 1917, p. 131]:

Woman much missed, how you call to me, call to me

If we were to simply perform scansion by marking the primary (/), sec-
ondary (\), and unstressed syllables (x) along the line as provided for the
individual words in a dictionary, the result would be

wo man much missed how you call to me call to me
/ x / \ / / / x / / x /

which is not the pattern we are looking for. This poem is in fact composed of
four quatrains5, where each line is written in dactylic tetrameter throughout,
which leads to the following analysis for this line.

wo man much missed how you call to me call to me
/ x x / x x / x x / x x

As is obvious, we have to know the prosodic stress of the line in order
to calculate the meter of the poem, but simply knowing the lexical stress of
each of the words will not suffice. The lexical stress is the relative emphasis
inherent to certain syllables in a word, independently of the word’s context.
The prosodic stress shows the prominence of each of the syllables within a
sentence.

(b) Dividing the stress pattern into feet

The prosodic stress location is important, but knowledge of it is still not
sufficient to obtain the intended overall meter of a poem. In order to analyze
the meter, each line needs to be divided into plausible feet. Returning to the
above example by Thomas Hardy (presented in section a), it should be
determined that the poem’s lines are composed of four dactyls, and thus,
that its meter is dactylic tetrameter.

5Quatrain: a stanza containing four lines.
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(c) Dealing with out-of-vocabulary words

Automatic scansion is made considerably more difficult by the presence of
out-of-vocabulary words. Although the lexical stress of words is not sufficient
for scanning a line of poetry, it can be a necessary element. For some words,
however, it is not available in standard dictionaries. Let us suppose that we
are scanning the following line from Henry Wadsworth Longfellow’s poem
“The song of Hiawatha” [Longfellow, 1855, p. 39]:

By the shores of Gitche gumee

Here, most dictionaries would lack entries for either Gitche or gumee. For
such cases, an informed method or algorithm is needed for assigning lexical
stress to out-of-vocabulary words. The use of rare, made-up, or unknown
words is, of course, common in poetry. They appear as a result of atypical
spellings, are derived through complex morphological processes, or are just
nonsensical words coined for the occasion (cf. John Lennon’s The faulty
Bagnose or Jabberwocky by Lewis Carroll, 1982). Usually, the character
names in poems also do not appear in dictionaries, and so their scansion
cannot be inferred from such knowledge sources. This problem is exacerbated
in older poetry (e.g., Beowulf ). Failure to correctly indicate primary stress
in such unknown words results in a lower accuracy of automatic scansion
systems.

II.1.3 Tradition in Spanish

In Spanish poetic tradition, several metrical structures have been used through
time, and information about them can be found in works about Spanish met-
rics [Quilis, 1984, Tomás, 1995, Caparrós, 1999].

As noted in Quilis [1984], classification of verses in Spanish can be made
according to: (1) the number of syllables, and (2) the stress of the last word.
As these are the two factors that categorize verses in Spanish, Spanish poetry
is accentual-syllabic.

Considering the number of syllables, versos de arte menor (minor art
verses), de arte mayor (major art verses) and compuestos (composite verses)
can be found. The main characteristic of minor verses is the agility they
transmit. Light poetic compositions tend to use this meter. Minor meters
comprise verses that contain from two up to eight syllables, as in this ex-
ample from La señorita del abanico by Federico Garcia Lorca [Lorca, 2017]
whose lines contain five syllables:
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La señorita
del abanico,

va por el puente
del fresco ŕıo.

...

Major art verses are used to convey more thoughtful information, as they
are longer verses. The verses must contain nine, ten or eleven syllables. In the
poem El estudiante de Salamanca [Espronceda, 1999], José de Espronceda
uses twelve syllables in his verses:6

...
Cual suele la luna tras lóbrega nube

con franjas de plata bordarla en redor,
y luego si el viento la agita, la sube
disuelta a los aires en blanco vapor:

...

The composite verses are made-up of two simple verses including a
caesura or pause between them in a single line. This pause limits the use
of syllable contractions, —i.e. synaloepha (explained below)—, as two sylla-
bles that are separated by a caesura cannot be contracted. These verses can
contain twelve syllables (dodecasyllabic), fourteen syllables (alexandrine)
or more. The poem about Gonzalo de Berceo in Mis poetas, by Antonio
Machado [Machado and Cano, 1970], is composed of several verses, each of
them containing two simple verses of seven syllables (and summing a total
of fourteen syllables for each line):

...
Su verso es dulce y grave: monótonas hileras
de chopos invernales en donde nada brilla;

renglones como surcos en pardas sementeras,
y lejos, las montañas azules de Castilla.

...

The previous typology sets different kinds of verses based on their num-
ber of syllables. According to the last words stress, there can be verses
whose last syllable is stressed (oxytone), verses whose penultimate syllable

6The second and fourth line contain eleven syllables. This phenomenon, with the same
example, is explained below.
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is stressed (paroxytone) and the last ones, whose antepentultimate syllable
is prominent (proparoxytone). The lines that have their penultimate syllable
stressed are the most common in Spanish poetry.

There are some metrical phenomena related to the last words stress. As
explained and justified in Quilis [1967], the classification of verses according
to the number of syllables can be changed slightly. For instance, a verse that
has eight syllables and stress of the last word is on the penultimate syllable,
will be considered an octosyllabic verse. Contrary to this, in oxytone verses,
a syllable should be added, so a verse that contains seven syllables and has a
stress on the last syllable, will also be considered octosyllabic. This happens
in the poem Rimas by Gustavo Adolfo Bécquer [Bécquer, 2016]:

Saeta que voladora

cruza, arrojada al azar,

y que no se sabe dónde.

temblando se clavará;

...

The other special phenomenon is found in proparoxytone lines, in which
the antepenultimate syllable is stressed. In this case, a verse that contains
twelve syllables is considered a hendecasyllabic line. Proparoxytone verses
are not frequent in Spanish poetry. Below an excerpt from the poem Padre
fray Adrián, ni el adriático can be seen, by Cairasco de Figueroa [Durán,
1982]:

...

Estos con vos, por la región tritónica,

de las ieguas indómitas el piélago,

passaron hasta ver la plaia ibérica,

...

In this work, because of annotated corpus availability, I have focused only
on a specific prosperous period, the Golden Age. In this period the main
meter of poetry was the hendecasyllable, in which each verse had eleven
syllables. The stress sequence of these lines is quite regular and usually the
10th syllable will be stressed (paroxytone verses). Other syllable positions
are also stressed and this leads to a subcategorization of hendecasyllabic
lines, which can be either

1. emphatic: 1st and 6th syllables are stressed
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2. heroic: 2nd and 6th syllables are stressed

3. melodic: 3th and 6th syllables are stressed

4. or sapphic: 4th and 6th or 8th syllables are stressed

Apart from these predefined structures, others such as dactylic or iambic
can be found, but they are not as common.

One of the challenges in Spanish poetry is the use of syllable contrac-
tions or synaloephas, which fit verses with more syllables into the predefined
structures. As an example, let us recall a previous example:

...
Cual suele la luna tras lóbrega nube

con franjas de plata bordarla en redor,
y luego si el viento la agita, la sube
disuelta a los aires en blanco vapor:

...

In these lines, the first and third lines contain twelve syllables and the
second and fourth ones eleven. The stresses found in the lines are repetitive:

...
Cual sue le la lu na tras ló bre ga nu be
x / x x / x x / x x / x

con fran jas de pla ta bor dar la en re dor
x / x x / x x / x x /

y lue go si el vien to la a gi ta la su be
x / x x / x x / x x / x

di suel ta a los ai res en blan co va por:
x / x x / x x / x x /

...

There is a recurrent pattern of beats, which is “x/xx/xx/xx/x” in the
odd lines and “x/xx/xx/xx/” in the even lines. If the syllables are counted
directly in the second line, there would be 12 syllables, but in order to fit in
the poem’s meter, the syllables from “bor.dar.la en re.dor” must be joined.7

7Syllable union is expressed with the underscore symbol ( ).
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The same happens in the third and fourth lines, where some words have to
be merged (“y lue.go si el vien.to la a.gi.ta” and “di.suel.ta a los ai.res”).

II.1.4 Tradition in Basque

In the Basque Country there exists a long-standing live performance tradi-
tion of improvising verses —a type of ex tempore composition and singing
called bertsolaritza [Garzia et al., 2001]. In terms of written poetry, the first
known printed book in Basque appeared in 1545. It was entitled Linguae
Vasconum Primitiae, and it was written by Bernat Etxepare. This was a
complete book containing several poems. A century later, Rafael Micoleta
in 1653 [Micoleta et al., 1880], and Arnaut Oihenart in 1665 [Lafitte, 1967,
Urkizu, 1994], attempted to formalize Basque poetic meter.

Current Basque poetry follows the syllabic metrical system and accents
are not supposed to be taken into account. In spite of that, old Basque poets
did not always use isosyllabic structures,8 and the number of intelligible
beats in those verses was the same, which suggests that the metrical unit
in Basque was not the single syllable. Thus, older poetic tradition could
be based on accentual or accentual-syllabic meter. Manuel Lekuona argued
in an opening discourse [Lekuona, 1918, p. 29] that Basque verses are not
built upon simple syllable count, but, rather, with a combination of counting
syllables and counting plausible feet.

In this work I focus on the stress structure of the verses. More currently,
some researchers have addressed this issue, some of them having contra-
dictory opinions on the topic. Some experts claim that rhythm plays —or
should play— an important role in Basque poetry, as it can be observed in
the work Onaindia [1961]:9

. . .

Literatur guztiak dabez euren lege ta arauak, olerkigintzan bereziki;
euskeran be naitaez izan bear. Lau gauza oneik beintzat gogotan artu
bearrak doguz: 1) Igikera (ritmu); 2) etena (cesura); 3) neurria, ta 4)

oskide edo azken amaitze bardiña (rima).

-

Any literary tradition has its own laws and rules, especially in poetry;
Then, in Basque we must have them too. At least, we must take these four

things into account: 1) Rhythm; 2) caesura; 3) meter, and 4) rhyme.

. . .

8Verses with the same number of syllables
9The original work is in Basque, and my own translation can be seen below.
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Other researchers, however, state that in Basque stress does not play an
important role in Basque. In fact, Nikolas Ormaetxea —Orixe— proposes
an experiment in which he asks one hundred people to mark the stresses
in a text. He ensures that these people will mark the stresses differently
[Ormaechea, 1920]:10

. . .
Para probar lo poco sensible que es el acento vasco, inténtese colocar
acentos gráficos en las silabas que uno crea acentuadas, encárguese el

trabajo a cien personas de buen oido y en una página que se someta al
análisis, se puede asegurar sin temor, que no habrá dos que coincidan.

-
In order to show the low sensitivity of Basque stress, try to mark stresses

of a text. Ask one hundred people to mark the stresses and in a single page,
I am completely sure that there will not be two equal analyses.

. . .

After reading what different researchers state about Basque stress, my
insight is that if I ask a group of people that speak the same dialect in
Basque, according to Zuazo-Zelaieta [1998], to tag a set of metrically regular
poems, there should be a significant agreement.

Recent poetry in Basque is sung or written primarily on fixed metrical
structures. These metrical structures are referred to as small and big meters,
neurri txikiak and neurri handiak, respectively. “Neurri” is the Basque word
for “meter”, and “txiki” and “handi” refer to the size of the verse, being
translated as small and big. This nomenclature is similar to the Spanish one.

On the one hand, small meters are composed of lines that must contain
7 and 6 syllables, in the odd and even lines, respectively. On the other hand,
the lines in big meters have 10 and 8 syllables in the odd and even lines.
Below, two examples can be seen of such meters, the first one by Xabier
Amuriza11 using a small meter and the second one by Unai Iturriaga12 using
a big meter:

Neu.rriz e.ta e.rri.maz Through meter and rhyme
kan.ta.tze.a hi.tza to sing the word

ho.rra hor ze ki.rol mo.ta that is what kind of sport
den ber.tso.la.ri.tza bertsolaritza is.

10This work was published in Spanish and I also provide my translation below.
11http://bdb.bertsozale.eus/en/orriak/get/4-zer-da-bertsoa
12http://bdb.bertsozale.eus/en/web/bertso/view/kf7lk.

http://bdb.bertsozale.eus/en/orriak/get/4-zer-da-bertsoa
http://bdb.bertsozale.eus/en/web/bertso/view/kf7lk
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Ber.tso.la.ri.tzak ho.ri.xe dau.ka That is what Bertsolaritza is
i.noiz gaiz.ki i.noiz on.gi (we perform) sometimes bad, sometimes well

e.ta tar.te.an gal.de.ra i.kur bat and sometimes a question mark,
zer den ez da.ki.gun ho.ri. what we do not know.

No.rai.no nai.zen a.zal.du nahi.an I wanted to show how far I could reach,
e.to.rri naiz e.ta to.ri! I came for that but I could not show it!

E.san ez dut ba ber.tso.a hau.xe da: That’s a Basque poem,
ten.te i.raun e.do e.ro.ri. Stand up or fall down.

Ha.le.re mai.te nau.zu.e.la.ko In spite of that, as you (listeners) love me
es.ke.rrik as.ko da.no.ri. thank you all.

The number of lines expresses the name that the whole meter will receive.
For example, a poem with small meter and eight lines will be called small of
eight, or Zortziko txikia.13 The poems containing eight or ten lines are the
most common ones, although others, more special ones, are becoming pop-
ular. These structures are very diverse; some of them are based on classical
songs by Basque musicians, such as Xabier Lete14 or Mikel Laboa,15 and
others are based on international songs, such as “Redemption”,16 by Bob
Marley or “Blowing in the wind”,17 by Bob Dylan.

II.2 Automatic scansion of poetry

Automatic scansion of poetry has attracted attention from numerous schol-
ars for years, and in the following section some of them are cited. Some
works perform a statistical analysis, like Hayward [1991] and Hayes et al.
[2012]. Others use linguistic knowledge acquired by making observations in
different kinds of poetry and they use this knowledge to generate some rules
for the assignment of stress. Over the last few years, with the development of
the Machine Learning based methods, supervised machine learning systems
are appearing as will be observed below.

13Zortzi is the word in Basque for the number “eight” and txiki is “small”.
14http://bdb.bertsozale.eus/en/web/doinutegia/view/

2149-izarren-hautsa-egun-batean
15http://bdb.bertsozale.eus/en/web/doinutegia/view/

2932-eguzkiak-urtzen-du-han-goian-a
16http://bdb.bertsozale.eus/en/web/doinutegia/view/

3157-azken-tragotxo-hori-hartu
17http://bdb.bertsozale.eus/en/web/doinutegia/view/

3163-geldirik-ezin-naizela-egon

http://bdb.bertsozale.eus/en/web/doinutegia/view/2149-izarren-hautsa-egun-batean
http://bdb.bertsozale.eus/en/web/doinutegia/view/2149-izarren-hautsa-egun-batean
http://bdb.bertsozale.eus/en/web/doinutegia/view/2932-eguzkiak-urtzen-du-han-goian-a
http://bdb.bertsozale.eus/en/web/doinutegia/view/2932-eguzkiak-urtzen-du-han-goian-a
http://bdb.bertsozale.eus/en/web/doinutegia/view/3157-azken-tragotxo-hori-hartu
http://bdb.bertsozale.eus/en/web/doinutegia/view/3157-azken-tragotxo-hori-hartu
http://bdb.bertsozale.eus/en/web/doinutegia/view/3163-geldirik-ezin-naizela-egon
http://bdb.bertsozale.eus/en/web/doinutegia/view/3163-geldirik-ezin-naizela-egon
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II.2.1 Rule-based scansion

Logan [1988] documents a set of programs to analyze sound and meter in
poetry. This work falls in a general genre of techniques that attempt to ana-
lyze the phonological structure of poems following the generative phonolog-
ical theory outlined by Chomsky and Halle [1968] and described by Brogan
[1981].

Gervas [2000] proposed a logic programming approach for the analysis of
Spanish poems and evaluated such approach in a set of Spanish Golden Age
sonnets. This system used a logic programming approach (Definite Clause
Grammars) for the syllabification and various rules to assign stress to sylla-
bles. Apart from that, it performed rhyme analysis on the input poems.

Scandroid is a program that scans English verse written in either iambic
or anapestic meter, designed by Charles O. Hartman [1996, 2005]. The source
code is publicly available.18 The program can analyze poems and check if
the predominant stress pattern is iambic or anapestic. However, if the input
poem’s meter is not one of those two, the system forces each line into one
of them.

AnalysePoems is another tool for identification of metrical patterns, writ-
ten by Plamondon (2006). In contrast to other programs, its main goal is not
to perform perfect scansion (p. 128-129), but to identify the predominant
meter of a poem. The program also checks the rhyme scheme found in the
input poem. It is reportedly developed in Visual Basic and the .NET frame-
work; however, neither the program nor the code appear to be available.

Calliope is a similar tool, built on top of Scandroid by Garrett McAleese
[2007]. It is an attempt to take advantage of syntactic information in order
to improve scansion. The program does not seem to be freely available.

Bobenhausen and Hammerich present a tool19 that performs general
poetry analysis including scansion in German [Bobenhausen, 2011, Boben-
hausen and Hammerich, 2015]. The system, called Metricalizer, analyzes
several aspects of an input poem, such as the prosodic structure, rhymes
and classification of a poem according to the previous features. Its output
can be saved in TEI format.20 Metricalizer has been used in other projects,
such as Baumann and Meyer-Sickendiek [2016], Kraxenberger and Menning-
haus [2016].

In Navarro-Colorado [2015] a hybrid approach to Spanish meter is pre-
sented. The author proposes a chain that performs syllabification, POS-

18http://oak.conncoll.edu/cohar/Programs.htm
19The tool is available online at http://www.metricalizer.de/
20A commonly used format for encoding textual data.

http://oak.conncoll.edu/cohar/Programs.htm
http://www.metricalizer.de/
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tagging and blending or segmenting syllables according to synaloephas,
dieresis or syneresis. The system is hybrid as it performs scansion in a rule-
based fashion and statistical information is used for the disambiguation of
possibly ambiguous cases. It also performs clustering of similar poems by
using topic modeling and K-means clustering.

Of the current efforts, the work Delmonte [2016] should be underlined, as
Shakespeare’s sonnets are analyzed from different points of view, for exam-
ple, the concreteness/abstractness of words, scansion, rhymes, alliterations
and so on. Scansion is performed using a set of rules and a syllable list to
divide the words into syllables and assign the stress.

II.2.2 Data-driven scansion

In Hayward [1991] one of the goals of analysis was to see whether it would be
possible to differentiate among the metrical patterns developed by individ-
ual writers. They also had a goal of analyzing the stylistic differences among
periods, which is why they collected a corpus with several poets from several
periods. In order to analyze poetry in the above senses, they built a model
based on what they called Parallel Distributed Processing (PDP) [Rumel-
hart et al., 1988b], which nowadays is better known as Neural Networks.
They created a Neural Network that had 5 inputs that encode different in-
formation about the poetry line to be analyzed. These 5 features include
intonation, lexical stress, prosodic information, grammatical structure and
the interpretation of the significance of a word within a poem (subjective).
Each of the 5 inputs had ten values, which encode feature values for each
of the syllables of the line. Hayward analyzed ten different poets represent-
ing different periods, two of whom were from the renaissance, another two
represented neo-classical verse, three from the romantic period, two Victo-
rian and a last twentieth-century American writer. With this information,
Hayward analyzed their poetic work and he argues that the computerized
connectionist model of poetic meter was successful in determining significant
differences among the analyzed poets.

Greene et al. [2010] uses statistical methods in the analysis of poetry.
For the learning process, The Sonnets by Shakespeare was used, as well
as a number of other works freely available online.21 Weighted finite-state
transducers were used for stress assignment. As with the other documented
projects, there is no implementation to review.

21http://www.sonnets.org

http://www.sonnets.org
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Hayes et al. [2012] propose in their article a new approach to analysis
in metrics. Their research is built upon two main works: Generative met-
rics [Halle and Keyser, 1971] and Maxent Grammars [Hayes and Wilson,
2008] for the analysis of phonotactics. In this work they propose a set of
constraints that can appear in a verse line, and according to the number of
times each of these constraints is not fulfilled and according to the weight
of each constraint, they calculate the metricality of a line. The proposed
method is like a Logistic Regressor, in which the features are the number of
times each constraint is violated. Then they learn the weights for each of the
constraints by Maximum Likelihood to maximize the predicted probability
of all the lines in the corpus. The selected features are constraints that they
present in section 5. Some of the constraints include elements related to
prosodic hierarchy, and their boundaries. Others refer to the relative stress
between syllables, as in iambic pentameter, it is expected that rising and
falling syllables be in specific positions. In the model presented in Hayes
and Wilson [2008] they proposed a method for learning the constraints by
maximizing the probability of the corpus. One of the interesting results of
this work was the tagged corpus that they created, which was composed
using Shakespeare’s Sonnets and Milton’s Paradise Lost (eighth and ninth
books), manually tagged by using a four-level notation traditionally used in
generative metrics [Halle and Keyser, 1971].

Estes and Hench [2016] is a current work that makes use of supervised
learning tools in order to metrically analyze poems written in Middle High
German. Middle High German poetry is a hybrid between qualitative and
quantitative verse, which means that both the length and the stress of syl-
lables are taken into account for patterning in the lines. In order to perform
supervised learning, they use a corpus of 825 manually annotated lines,
which are marked by the authors. The features that are used for the learn-
ing include the position within the line, length of the syllable in characters,
some specific characters of the syllable, next syllables first two characters,
previous words last two characters, syllable weight and length and word
boundaries. The model used is a Conditional Random Field and they report
to achieve an F-Score of 0.894 on 10-fold cross-validated development data
and 0.904 on held-out testing data.

II.2.3 Automatic poetry analysis

In the following lines I present some systems that perform general poetry
analysis, modeling elements like semantics, syntax, sound devices, to name
a few.
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In Kaplan and Blei [2007], the authors made a computational stylistic
analysis of American poetry. By projecting poems into a multi-layered latent
structure and computing distances among these representations, the authors
analyze and classify American poetry (by style and author). They analyze
orthographic (word count, number of lines, number of stanzas, average line
length (in words), average word length, average number of lines per stanza
and the frequency), syntactic (part of speech frequencies) and phonemic fea-
tures (rhymes, alliteration, assonance and consonance). These authors visu-
alize the embedded poems by using Principal Component Analysis (PCA).
They demonstrate that their method delineates poetry style better than the
traditional word-occurrence features that were used in typical text analysis
algorithms before.

In 2012, Kao and Jurafsky make use of computational methods to com-
pare the stylistic and content features among award-winning poets and ama-
teur poets. The features that they use in order to analyze poetry are diction,
sound devices, affect and imagery. Unfortunately, it appears that they do
not use meter as an informative feature, although it is a sound device. They
make quite an extensive analysis of the stylistic differences between award-
winning poets and amateur ones.

In McCurdy et al. [2015], the authors present a formalism to describe
rhyme in poetry, which is represented as rhyming templates, in a similar
way that was done in our previous work Agirrezabal et al. [2012b]. The
difference from our work was that in the work by McCurdy et al. stress
values are taken into account and a text written in Arpabet22 format must
be given as input. Moreover, apart from the formalism, they also present a
tool to analyze sonic devices in poetry, called RhymeDesign.

II.3 Sequence modeling

In the present study I analyze poems and obtain information about their
rhythm. As the goal is to assign stresses to syllables, the problem can be
treated as a sequence modeling task, where the elements within a sequence
will be given a tag. In the Natural Language Processing (NLP) literature,
several systems have been proposed for this task. This section gives an
overview of some typical approaches to sequence modeling in NLP along
with some examples and applications.

A supervised learning problem is a Machine Learning task where some
data and its target values are given [Friedman et al., 2001]. The input data is

22The formalism used in the CMU pronunciation dictionary [Weide, 1998].
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a set of examples or instances which have an output. These output values can
be a continuous value, regression, or a set of specified k values, classification.
Each instance of the input data is represented by a vector of numeric values
and these methods attempt to learn a function that will perform the mapping
between input examples and target values.

In some cases, nevertheless, the predictions cannot be made simply by
looking at local values or local elements, as the global structure of the output
is important [Daume, 2006, Sutton and McCallum, 2011, Graves, 2012]. In
such cases, the problem can be tackled as a structured prediction problem,
in which a sequence of input feature vectors is given and a (hopefully) opti-
mum result is predicted. Structured prediction is a set of machine learning
techniques, whose aim is to predict structured objects, rather than single
outputs, like in previously mentioned classification or regression problems.

It is noteworthy to understand the importance of doing predictions jointly,
and not just independently. The main advantage is that they calculate the
optimal resulting sequence for each input. Let’s suppose we want to create
a very simple part-of-speech tagger and we want to assign POS-tags to each
of the word according to their joint probability. In order to do it a simple
table can be used, where for each word in a vocabulary, includes the prob-
ability of having such POS-tag given the word. This information can easily
be calculated from tagged corpora.

Word . . . DET MOD NN PRP VB . . .

a . . . 0.95 0.0 0.05 0.0 0.0 . . .
buy . . . 0.00 0.0 0.015 0.0 0.985 . . .
can . . . 0.0 0.7 0.3 0.0 0.0 . . .
car . . . 0.0 0.0 1.0 0.0 0.0 . . .
have . . . 0.0 0.0 0.03 0.0 0.97 . . .
I . . . 0.0 0.0 0.0 1.0 0.0 . . .

Imagine that we are given the following sentence,

I have a car
PRP=1.0 VB=0.97 DET=0.95 NN=1.0

NN=0.03 NN=0.05

whose POS-tags can be easily assigned by considering the probability of
each tag, given the word.

I+PRP have+VB a+DET car+NN
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In this example, the assignment of the part of speech is fairly straight-
forward, as we only have to check the probabilities between the input and
output variables. One of the most challenging problems in Natural Language
Processing is ambiguity, and ambiguity can make a POS-tagger fail when
predicting values. For instance, if the input sentence is

I can buy a can
PRP=1.0 MOD=0.7 VB=0.985 DET=0.95 MOD=0.7

NN=0.3 NN=0.015 NN=0.05 NN=0.3

by assigning the tags in the same way as before, we will get as a result

I+PRP can+MOD buy+VB a+DET can+MOD

which, obviously, is not correct as the second occurrence of can is not a
modal, but a singular noun. In structured prediction models, the transitions
between output elements are also modeled. Obviously, the probability of
having a noun after a determiner is considerably higher than having a modal.
In this way, structured prediction systems learn more complex but more
reliable models.

II.3.1 Greedy sequence tagging/modeling - Sequence tagging as classifi-
cation

Sequence tagging is done greedily when predictions are made locally, i.e.
each word —or each element in the sequence— is treated independently. It
is typical the use of previously made predictions so as to model the complex
dependencies among the outputs [Sutton and McCallum, 2011]. For example,
in figure II.1, each prediction is only dependent on the current word and the
previous prediction (forward tagging). In order to calculate the tag VB that
should be assigned to the word chases, its probability has been estimated
according to the current word (chases) and the previous prediction (NN). In
figure II.2 the model performs a similar function by using the next prediction
(Backward tagging).

In the previous two cases, for each instance being predicted, there are
two different elements, i.e. attributes, which should give enough information
for the current prediction. These are the current word and the previous or
next prediction.
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Figure II.1: Forward tagging us-
ing current element and previous
prediction.

Figure II.2: Backward tagging
using current element and next
elements prediction.

II.3.2 Structured prediction

In figure II.1 and II.2, it can be seen that if one of those predictions is not
done correctly, its error will be propagated throughout the whole sequence,
as that prediction is used to estimate the next elements POS-tag. This is
called error-propagation. Structured prediction systems tackle this problem
by generating a set of probabilities for the sequence. Once a set of probabil-
ities is calculated for each element the optimal one over all possible output
sequences is found. Consider the following sentence

I can buy a can

whose possible POS-tags23 would be

I can buy a can
PRO=1.0 MOD=0.7 VB=1.0 DET=1.0 MOD=0.7

NN=0.3 NN=0.3

In order to calculate the optimal resulting sequence, we need to know
the probabilities of the output sequences. Below the informative probabilities
are included and, for the sake of simplicity, the other transition probabilities
will be assumed to be 1.0.

PRO - MOD 0.98
PRO - NN 0.02

DET - MOD 0.08
DET - NN 0.92

23This is obviously an artificial example and its probabilities have been made up.
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At this point, all the possible outputs have to be generated and the
most probable one has to be chosen. So that to calculate the whole sen-
tences probability, this probability must be calculated for each element in
the sequence:

P (postag[t]|word[t])︸ ︷︷ ︸
Emission probability

xP (postag[t]|postag[t− 1])︸ ︷︷ ︸
transition probability

1. PRO MOD VB DET MOD→ (1.0×1.0)×(0.7×0.98)×. . .×(0.7×0.08) = 0.038416

2. PRO MOD VB DET NN → 1.0× 0.686× 1.0× 1.0× 0.276 = 0.189336

3. PRO NN VB DET MOD → 1.0× 0.006× 1.0× 1.0× 0.056 = 0.000336

4. PRO NN VB DET NN → 1.0× 0.006× 1.0× 1.0× 0.276 = 0.001656

This was a simplistic view of a more complex problem. Usually the num-
ber of possible sequences and the possible POS-tags is larger, so calculating
such probabilities is computationally complex. In order to do it efficiently
an algorithm called Viterbi is used.

II.3.3 Scansion as a sequence modeling problem

In this section until now, I have reviewed the two main approaches when
sequence-to-sequence problems must be solved. The two approaches were
presented using a typical task in Natural Language Processing, which is
POS-tagging.

The problem I am facing in this work is similar, as, given an input
sequence, an output sequence that best fits has to be calculated. Given a
sentence (syllabified or not) a sequence of stresses must be returned. Let’s
suppose that the input sentence (verse) is this, from “To Autumn” by John
Keats:

To swell the gourd and plump the hazel shells

On the one hand, if the sentence is previously syllabified, then the model
may have to learn a syllable to stress mapping, for instance:

Input: to swell the gourd and plump the ha zel shells
Output: x / x / x / x / x /

On the other hand, if the words have not previously syllabified:

Input: to swell the gourd and plump the hazel shells
Output: x / x / x / x /x /
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In the first case, the possible output set is / and x. However, in the
second case, the set should also include the pattern /x, apart from / and x.
Then, the output set, or dictionary, is bigger.
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CHAPTER III

Annotated corpora of verse

In order to scan poetry automatically, it is important to have access to met-
rically annotated poetry. Unfortunately, there are not very many annotated
poetry corpora available. To the extent of my knowledge, these are the most
significant repositories of annotated poetry corpora:

• For Better For Verse (4B4V)1 [Tucker, 2011]

• ReMetCa2 [González-Blanco Garćıa and Rodŕıguez, 2013]

• Corpus de Sonetos del Siglo de Oro3 [Navarro-Colorado et al., 2016]

• The Corpus of Czech verse4 [Plecháč and Kolár, 2015]

Then, I tried to collect written corpora in different languages that in-
cluded metrical information about poems. As it may be seen in later sections,
three collections of poetry in English, Spanish and Basque are used. The En-
glish work is used as a basis for all the experiments, and then the parameters
learned from it are used in Spanish and Basque. The main reasons for using
the English and Spanish corpora is not only the availability of the corpus
but also my linguistic competence in both languages. I am working with
the Basque language in order to make a contribution in this understudied
subject. The collection in Basque was not annotated metrically, so this is
the first proposal of an annotated corpus.

1http://prosody.lib.virginia.edu/
2http://www.remetca.uned.es/
3https://github.com/bncolorado/CorpusSonetosSigloDeOro
4http://www.versologie.cz/en/kcv.html

http://prosody.lib.virginia.edu/
http://www.remetca.uned.es/
https://github.com/bncolorado/CorpusSonetosSigloDeOro
http://www.versologie.cz/en/kcv.html
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III.1 Encoding of poetry

In this work the encoding format that was first used in the 4B4V corpus is
followed, the Text Encoding Initiative5 (TEI) guidelines [TEI Consortium,
2008]. Text Encoding Initiative is a consortium responsible for developing
and maintaining the standards for encoding textual data. The guidelines
they propose are widely followed by libraries, museums, publishers, and in-
dividual scholars. Apart from being widely used, it has specific features for
encoding information about poetry6 —documented in the Verse module—,
such as rhyme, meter, caesuras and so on.

One of the advantages of annotating poetry in a unified manner is that
the information can be extracted easily. Consider this excerpt from Lewis
Carroll’s “Phantasmagoria and other poems” [Carroll, 1869]:

Away, fond thoughts, and vex my soul no more!
Work claims my wakeful nights, my busy days,

Albeit bright memories of the sunlit shore
Yet haunt my dreaming gaze.

This is the forth stanza from a poem that appears at the beginning of
the book. Following the TEI guidelines, the lines have to be placed between
l tag and whole stanzas between the lg tags. Each of these elements can
incorporate some attributes, e.g., @n, which will mark the line or stanza
number. This information is shown in listing III.1.

Listing III.1: Marking line groups and lines.

1 <lg n="4">

2 <l n="1">Away , fond thoughts , and vex my soul no more!</l>

3 <l n="2">Work claims my wakeful nights , my busy days ,</l>

4 <l n="3">Albeit bright memories of the sunlit shore </l>

5 <l n="4">Yet haunt my dreaming gaze.</l>

6 </lg>

In listing III.2, it can be seen what the stanza looks like when stress
and rhyme information is added. Readers should be aware of the interest of
marking the rhyme, as the rhyme of some words cannot be inferred directly
without having knowledge about the language in question, e.g., days and
gaze. In the case of stress, information can be incorporated in the l element
by using the attributes @met and @real. The first attribute, @met, includes
the metrical structure that the line follows and the second one, @real, shows
the actual realization when the poem is read aloud. In this work, this second

5http://www.tei-c.org
6http://www.tei-c.org/release/doc/tei-p5-doc/en/html/VE.html

http://www.tei-c.org
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/VE.html
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parameter (@real) is used for learning and evaluation. The stress values
in these attributes are marked with the + and - symbols, as previously
mentioned in subsection II.1.1.

Listing III.2: Marking stress and rhyme information.

1 <lg n="4">

2 <l n="1" met=" -+-+-+-+-+" real=" -+-+-+-+-+">

3 Away , fond thoughts , and vex my soul no <rhyme label="a">

more</rhyme >!

4 </l>

5 <l n="2" met=" -+-+-+-+-+" real="++-+-+-+-+">

6 Work claims my wakeful nights , my busy <rhyme label="b">

days</rhyme >,

7 </l>

8 <l n="3" met=" -+-+-+-+-+" real=" -+++---+-+">

9 Albeit bright memories of the sunlit <rhyme label="a">shore

</rhyme>

10 </l>

11 <l n="4" met=" -+-+-+" real=" -+-+-+">

12 Yet haunt my dreaming <rhyme label="b">gaze</rhyme>.

13 </l>

14 </lg>

But we can go forward. Syllables can be marked too. The three corpora
incorporate information about syllable division, but the public version of the
Spanish corpus does not show it. In the 4B4V corpus, as the main dividing
unit is the foot, lines are divided in seg elements, which represent each foot
and syllables are divided using the syllable boundary (sb) element. In listing
III.3 you can see the third line of the previous example divided into syllables.

Listing III.3: Marking feet and syllable boundaries.

1 ...</l>

2 <l n="3" met=" -+-+-+-+-+" real=" -+++---+-+">

3 <seg>Al<sb/>beit</seg> <seg>bright me<sb/></seg><seg>mories

of</seg> <seg>the sun<sb/></seg><seg>lit <rhyme label="

a">shore </rhyme ></seg>

4 </l>...

5 </lg>

When foot division is not trivial, as in Basque, syllables are marked with
a slight difference. In listing III.4, these two lines are encoded into XML:

...
huntzak egin oihu:
akherra hor heldu.

...
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Listing III.4: Marking feet and syllable boundaries in the Basque corpus.

1 <l n="3" met="" real="+--+-+">

2 <seg type="syll" targetId="w13">hun</seg>

3 <seg type="syll" targetId="w13">tzak</seg>

4 <seg type="space"> </seg>

5 <seg type="syll" targetId="w14">e</seg>

6 <seg type="syll" targetId="w14">gin</seg>

7 <seg type="space"> </seg>

8 <seg type="syll" targetId="w15">oi</seg>

9 <seg type="syll" targetId="w15">hu</seg>

10 <seg type="punct" targetId="w16">:</seg>

11 </l>

12 <l n="4" met="" real="+--+-+">

13 <seg type="syll" targetId="w17">ak</seg>

14 <seg type="syll" targetId="w17">he</seg>

15 <seg type="syll" targetId="w17">rra</seg>

16 <seg type="space"> </seg>

17 <seg type="syll" targetId="w18">hor</seg>

18 <seg type="space"> </seg>

19 <seg type="syll" targetId="w19">hel</seg>

20 <seg type="syll" targetId="w19">du</seg>

21 <seg type="punct" targetId="w20">.</seg>

22 </l>

23 </lg>

This information, among other data, is available in all the corpora that
is used in this work. Having information encoded in such a way, allows
computers to access digitized data and get information that could not be
extracted (or would be hard to extract) from raw text.

Encoding poetry in different languages

A problem that was encountered when creating the Basque annotated cor-
pus, was that the 4B4V corpus’ main dividing unit is the foot. The poems
are tagged according to the predominant foot used in the poem. But, as the
foot division in Basque is not so well-known (trivial), I decided to make the
syllable as the main smallest constituent unit of ordinary matter, as it could
be seen in listing III.4. The same is done in the Spanish corpus, as can be
seen in Navarro-Colorado et al. [2015].

Another relevant issue relates to the goal of the corpora that is used to
create the models. For example, the English corpora was created to be used
in an online tutorial to teach people to scan poetry in English. The focus of
the corpus in Spanish was to create ML models to analyze poetry, and as a
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result, ambiguity cases have been resolved in a consistent way so that ML
models work better.

III.2 English poetry corpus

As the gold standard material for training the English metrical tagger, the
previously mentioned corpus, For Better For Verse (4B4V), from the Uni-
versity of Virginia7 [Tucker, 2011] was used. 4B4V is an interactive on-line
website to train people in the scansion of English poetry in traditional meter.
The site has been brought by the Scholar’s Lab at the University of Virginia
and it acts as an interface between the user and the tagged corpus, which
can be easily interpreted by the machine. The poems can be downloaded
from a public repository on GitHub.8,9 The website shows a poem from the
corpus and the user can mark each syllable’s stresses in the upper part of
each line, unstressed (u) or stressed (/). The feet can be marked throughout
the line, marking it between syllables. At the right side of each line, there
are three buttons, two of them for checking the marked stresses or feet and
the last one for setting the meter of the line.

The basic metrical unit is the foot and it is represented using the seg

element within each line. The rhythmic structure is shown by a sequence of
stressed/unstressed syllables for each line. The author of the 4B4V corpus
says to have a rising rhythm preference [Tucker, 2011, sec. 3].

Statistics

The entire collection is composed of 78 poems and approximately 1100 lines.
In table III.110 the obtained number of poems per period can be seen. Among
the 34 different authors, 31 are men and 3 are women. There is also a bias
in favor of British poets, as 31 out of 34 are British, two American and
one Irish. The collection of poems is rather homogeneous, the predominant
meter of the poems being iambic (91.38% of the lines). The remaining 8.62%
lines use trochaic (3.12%), anapestic (4.12%), dactylic (1.19%) or spondaic

7http://prosody.lib.virginia.edu/
8https://github.com/waynegraham/for_better_for_verse/tree/master/poems
9When the corpus was first downloaded, in 2013, 54 poems were downloaded, getting

them manually from the interactive website, by crawling the web. At a version downloaded
in November 30, 2015 from GitHub, 78 poems were available. This explains the difference
of results from Agirrezabal et al. [2013c, 2016b] to the ones presented here.

10Although the exact writing year is unknown, in this work, the poem Westron wynde
is considered a poem written between 1500 and 1599.

http://prosody.lib.virginia.edu/
https://github.com/waynegraham/for_better_for_verse/tree/master/poems
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Figure III.1: Guessing the stresses in Shakespeare’s sonnet no. 18

(0.18%) meters. Sometimes several analyses are given as correct, as there is
ambiguity when performing scansion. About 10% of the lines are ambiguous
and almost all of them have two alternative analyses, although they can
have three, four or five analyses.

Adaptation

Some of the annotated files were duplicated, and in some cases there were
two files with the same poem but not with the same additional information.
In such cases, all duplicated files were checked manually and the one that
seemed to be the most accurate was taken. Additionally, in seven poems
small changes had to be made, such as making the spaces be at the end of
each segment (Unless that was done, the corpus parser would raise an error).

Listing III.3 shows an example of how a verse from the English poetry corpus
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#Poems

1500-1599 6
1600-1699 18
1700-1799 6
1800-1899 32
1900-1999 16

TOTAL 78

Table III.1: Amount of poems per period of 100 years in the English corpus.

is annotated in 4B4V.

III.3 Spanish poetry corpus

For the Spanish language a corpus of Spanish Golden-Age Sonnets11 [Navarro-
Colorado et al., 2015, 2016] is used, which can also be downloaded from
GitHub.12 This is a collection of poems from the 16th and 17th century,
better known as The Spanish Golden Age.13 According to the authors,
when collecting this corpus, the goal was not to gather canonical writers,
but to collect the widest range of writers of the period, so as to create a
representative corpus. In this collection, there is some metadata including
information about the sonnet (author, title and encoding) and also informa-
tion about the metrical annotation status, whether the stresses have been
manually checked or not.

A difference regarding the poetry corpus in English is about the basic
metrical unit. In the Spanish corpus each verse is marked with a sequence
of stresses, which are encoded using the two-level marking in the same way
as previously.14 Then, in this case, feet are not marked as they are in the
4B4V corpus.

11Downloaded on September 1, 2016.
12https://github.com/bncolorado/CorpusSonetosSigloDeOro
13Although using a corpus that covered from the 16th until the 20th century would be

better, such corpus was not available. Performing further experiments with the medieval
Spanish corpus ReMetCa [González-Blanco Garćıa and Rodŕıguez, 2013] is interesting.

14Stressed and unstressed syllables are represented with the + and - symbols, respec-
tively.

https://github.com/bncolorado/CorpusSonetosSigloDeOro
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Statistics

The corpus is composed of 5,078 sonnets, which add up to 70,000 lines,
although not all the corpus is manually checked. From all authors, there is
only one woman, Juana Inés de la Cruz, and almost all of the authors were
Spanish. Of all the authors, one was from Brazil, another one from Sardinia
and a last one from Mexico (Juana Inés de la Cruz).15

At present, the portion that has been manually checked is composed of
approximately 135 sonnets and almost 2,000 lines. These poems were written
by seven different well-known authors,16 all of them men and Spanish. This
portion is used to train and test the supervised models.

Adaptation

The most common meter used in Spanish poetry is the hendecasyllable,
where each verse should contain eleven syllables. In spite of that, not all
verses contain eleven syllables in a strict sense. Sometimes syllable contrac-
tions are performed and two syllables are realized within the time of just
one syllable. This device is known as synaloepha. In the 4B4V corpus, each
syllable is marked with a level of stress, but in the Spanish corpus a stress
sequence is set for each verse. In some cases, the number of syllables and
stresses is not coherent. In order to deal with this, a heuristic was created
to balance them, whose algorithm can be found in appendix A. Broadly
speaking, when synaloephas appear, the heuristic adds unstressed syllables
trying to keep especially the lexical stresses. Because of this decision, the
results might be affected. Scansions will have an important bias towards
lexical stresses and as the place of the addition of unstressed syllables is
not regular, the resulting sequences will not be as regular as before. It is
expected that this will especially affect the structured prediction systems,
as they model the global structure of the output.

15There are some of them that lived out of Spain, but were considered Spanish.
16Miguel de Cervantes, Fernando de Herrera, Garcilaso de la Vega, Luis de Góngora,

Gutierre de Cetina, Félix Lope de Vega and Francisco de Quevedo.
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Listing III.5: Spanish poetry corpus example. The corpus originally included
only the met attribute and using the mentioned heuristic the real attribute
was added so that each syllable is mapped to a stress value.

1 <ns0:lg type="terceto">

2 <ns0:l met=" ---+++-+-+-" n="9" real="

---+-++--+--+-">Con El Isidro un cura de una

aldea ,</ns0:l >

3 <ns0:l met=" ---+---+-+-" n="10" real="

---+---+-+-">con Los Pastores de Bel &#233;n

Burguillo ,</ns0:l>

4 <ns0:l met=" -----+-+-+-" n="11" real="

-----+-+-+-">y con La Filomena un idiota.</

ns0:l>

5 </ns0:lg >

An example of the Spanish poetry corpus can be seen in listing III.5. The
original corpus only contained the @met attribute and for this work, the
@real attribute was added, which was calculated using the heuristic men-
tioned above and explained in appendix A.

III.4 Basque poetry corpus

At the very beginning of this work, there was no metrically analyzed corpus
for Basque. Therefore, I am attempting to propose the first metrically ana-
lyzed corpus for the Basque language. In order to create it we had to make
a poem selection that would be included. Three steps were followed in order
to create a metrically annotated corpus:

1. Selection of anthology

2. Selection of authors

3. Tagging of corpus

III.4.1 Selection of anthology

The first step was to take a previously made poetic anthology so as to
facilitate the process of selecting which poems to include. Among different
options, below some of the checked collections can be seen:

• Mila euskal-olerki eder (Aita Onaindia) [Onaindia, 1976]
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• Fantaśıa y realidad: Selección literaria vasca [Lafitte and Barbier,
1967]

• Gure poesia: Juan Kruz Igerabideren antologia [Igerabide, 1997]

• Antoloǵıa poética vasca [Arzallus, 1987]

• Euskal poesia kultoaren bilduma (1880-1982) [Amenabar, 1983]

• Antoloǵıa de la Poeśıa Vasca / Euskal Poesiaren Antologia [Aldekoa,
1993]

• Poeśıa Vasca. Antoloǵıa bilingüe (Patrizio Urkizu) [Urquizu Sarasua,
2009]

Of these anthologies, one was selected. The goal was to find a corpus that
covered (if possible) the same period as the English poetry corpus. The in-
tention was also to have poems with diverse topics, and because of that, some
collections that only included religious topics in the poems were discarded.
The corpus should also be digitized so that so that to avoid the tedious work
of transcription of poems or with scanning and Optical Character Recogni-
tion (OCR). After analyzing the pros and cons of each option, the anthology
that Patrizio Urkizu made in his book “Poeśıa Vasca. Antoloǵıa bilingüe”
was considered the most appropriate one. Another useful characteristic of
this collection was that for each poem it included a translation in Spanish.

As with most poetry corpora, the majority of authors in this corpus are
male, with 73 male and 4 female poets, summing a total of 77 poets. There
are other 3 anonymous poems. In the poetry collection there were poets
from different regions in the Basque country. In table III.2 the distribution
of the authors’ regions can be seen. The authors are distributed among the
Basque regions Gipuzkoa, Araba, Biscay, Navarre and the northern region
of the Basque Country.

III.4.2 Selection of authors

The whole selection of poems was too large for the first attempt of creating
an annotated corpus. The collection’s distribution was not evenly distributed
over periods of time (centuries). In the 16th, 17th and 18th century there
were 30 poems (10 poems for each century) but in the last two centuries,
there were far more poems. The solution was to analyze all the poems in
the first three centuries. In the last two centuries, as a rule of thumb, it was
decided to choose only poets who had more than one work in the corpus,
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Region No. of poets

Gipuzkoa 35
Northern region 25
Bizkaia 11
Nafarroa 4
Araba 2

Table III.2: Distribution of the authors among regions in the Basque Country
(whole corpus).

Region No. of poets

Gipuzkoa 15
Northern region 21
Bizkaia 2
Nafarroa 2
Araba 1

Table III.3: Distribution of the authors among regions in the Basque Country
(selected corpus).

assuming that authors with more than one contribution were perhaps better.
For each of the selected poets, only one poem was chosen, the most famous
one, and if this was not evident the choice was made randomly.

There are 41 poets in this selection and only one of them is a woman.
This selected portion includes approximately 54 poems and 2400 lines.

III.4.3 Annotating the corpus

After choosing the corpus and the poems, the next task was to convert the
raw text to a machine readable (and interchangeable) format. In order to
identify the words in the corpus the tokenizer that is used in the IXA pipeline
[Agerri et al., 2014] was used, which is available on GitHub.17 Let’s take as
an example the poem excerpt that we used at the beginning of this chapter,
which is the poem Akhelarre by Jules Moulier -Oxobi -:...

huntzak egin oihu:
akherra hor heldu.

...

17https://github.com/ixa-ehu/ixa-pipe-tok

https://github.com/ixa-ehu/ixa-pipe-tok
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In listing III.6, you can see the analysis produced by the Ixa pipeline for
the whole poem, including only the previous excerpt.

Listing III.6: Automatically processed poem.

1 <?xml version=’1.0’ encoding=’UTF -8’?>

2 <NAF xml:lang="eu" version="2.0">

3 <nafHeader >

4 <linguisticProcessors layer="text">

5 ... (TOKENIZER/POS -TAGGER/NER -TAGGER /...)

6 </linguisticProcessors >

7 </nafHeader >

8 <text>

9 ...

10 <wf id="w13" sent="1">huntzak </wf>

11 <wf id="w14" sent="1">egin</wf>

12 <wf id="w15" sent="1">oihu</wf>

13 <wf id="w16" sent="1">:</wf>

14 <wf id="w17" sent="1">akherra </wf>

15 <wf id="w18" sent="1">hor</wf>

16 <wf id="w19" sent="1">heldu </wf>

17 <wf id="w20" sent="1">.</wf>

18 </text>

19 <terms>

20 <term id="t13" lemma="huntz" morphofeat="NC0NP000" pos="N

" case="IZE ARR BIZ - ABS NUMP MUGM @OBJ @PRED @SUBJ">

21 <span>

22 <target id="w13"/>

23 </span>

24 </term>

25 <term id="t14" lemma="egin" morphofeat="VM000T00" pos="V"

case="ADT PNT ANB MDNC NOR_NORK NR_HURA NK_HIK -NO @+

JADNAG">

26 <span>

27 <target id="w14"/>

28 </span>

29 </term>

30 <term id="t15" lemma="oihu" morphofeat="NC000000" pos="N"

case="IZE ARR BIZ - ZERO @KM&gt;">

31 <span>

32 <target id="w15"/>

33 </span>

34 </term>

35 </terms>

After tokenization, a Python module combines the tokenized text in
NAF format18 [Fokkens et al., 2014] —that is, the representation from list-

18http://wordpress.let.vupr.nl/naf/

http://wordpress.let.vupr.nl/naf/
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ing III.6— and the poem itself (in raw text format) to create a document,
where metrical information will be added manually. Additionally, a finite-
state technology based syllabification system [Hulden, 2009] is incorporated,
and then, in the resulting document syllables are divided. The syllabifica-
tion procedure is based on Hulden [2006] and Agirrezabal et al. [2012b].
Each (automatically divided) syllable is linked to each of the tokens in the
poem, uniquely identified by the @id attribute of each word form in the
NAF document as can be seen in listing III.4.

When manually adding the metrical information about each line in a
poem, this was done according to my own intuition by reading it aloud.
But, if the poem had a sung version, I marked the stresses according to the
respective song. From the selected 54 poems, 16 were tagged according to
their sung version and 38 by reciting them.

To conclude, regarding the Basque corpus, there currently are two sub-
corpora. One of them contains poems which have been marked according to
their recited version and in the other one, the stresses have been marked
according to a well-known song (sung version).

III.5 Summary of annotated corpora

To summarize, I have presented three corpora that will be used to train
and test poetry scansion models. Some of them were previously annotated
[Tucker, 2011, Navarro-Colorado et al., 2016] and in the case of the Basque
language, I have performed annotations manually. When performing the
manual annotation, some poems were tagged according to their sung version
and some others according to the recited version. The sub-corpus of recited
poems is expected to be more regular.

A general overview of the data can be observed in table III.4, where we
can see the syllable, word and line frequencies of the three corpora (English,
Spanish and Basque (recited)).

III.6 Other corpora

Several poems from Project Gutenberg19 [Hart, 1971] were downloaded for
training, testing and evaluating some of the prosodic and semantic models.

A dump from Wikipedia20 was also used in order to train some semantic
models.

19http://www.gutenberg.org
20dated in July-07-2014

http://www.gutenberg.org
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English Spanish Basque

No. syllables 10988 24524 20585
No. distinct syllables 2283 1041 920
No. words 8802 13566 7866
No. distinct words 2422 3633 4278
No. lines 1093 1898 1963

Table III.4: Word, syllable and line counts for each corpus.

The pronunciation dictionaries NETtalk [Sejnowski and Rosenberg, 1987]
and CMU [Weide, 1998] were used, both of which list the pronunciations of
the words, the number of syllables they contain, as well as indications of
primary and secondary stress location. Each employs a slightly different no-
tation, but they are, in general, quite similar in content as they both mark
three levels of stress and show pronunciation:

NETTALK format:

@bdIkeS|n ‘_’_ S4 abdication 0 (N)

CMU format:

INSPIRATION IH2 N S P ER0 EY1 SH AH0 N

Finally, the Wall Street Journal section of the Penn Treebank [Marcus
et al., 1993] was used to train a part-of-speech tagger, the role of which is
described below.



CHAPTER IV

NLP techniques for scansion

Automatic scansion can be seen as a prediction problem, where getting each
of the words in a poem we must draw conclusions about the accent that
they are going to take. This prediction can be made in two different ways:

• following some rules that guide the marking, which are made by ex-
perts

• learning from patterns in the observed data and drawing con-
clusions from them, expecting that they will be representative.

In the next sections I describe the techniques used in the experimen-
tal work. First the rules and implementation of a rule-based approach are
explored, and then I deepen in the data-driven systems. Data-driven meth-
ods are supervised if tagged information is included in the data. If tagged
data is not available or it is not used, the methods are considered unsu-
pervised. Supervised systems are divided in three main subgroups: Greedy
predictors—i.e. the ones that classify each instance independently from the
others—, structured predictors— which find an optimal resulting sequence—
and neural networks (they work on both structured and unstructured out-
put).

IV.1 Rule-based scansion

As other rule-based works reviewed in section II.2 [Gervas, 2000, Hartman,
2005, Bobenhausen, 2011, Navarro-Colorado, 2015, Delmonte, 2016], a rule-
based method for poetry scansion was developed, presented in Agirrezabal
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et al. [2013c, 2016b]. This program is released under the GNU GPL license
and is available on Github.1

For this rule-based analyzer, a rather conservative approach was chosen,
and one which also lends itself to a fairly mechanical, linguistic rule-based
implementation. The system, which distinguishes three levels of stress in-
ternally, marks each line with a stress pattern and attempts to analyze the
predominant meter used in a poem.

IV.1.1 Method

The tool is constructed around a number of guidelines for scansion developed
by Peter L. Groves [Groves, 1998]. It consists of three main components:

(a) A simple implementation of Groves’ rules of scansion —mainly a col-
lection of POS-based stress-assignment rules.

(b) A pronunciation lexicon together with an out-of-vocabulary word guesser.

(c) A ‘plausible foot division’ system.

(a) Groves’ rules

These rules try to assign stress levels so that, as far as possible, this becomes
an objective process driven by lexicon and syntax, not dependent on more
elusive concepts of the poem such as meaning and intent. The rules assign
stress as follows:

1. Primarily stressed syllables of content words (nouns, verbs, adjectives,
and adverbs) receive primary stress.

2. Secondarily stressed syllables in polysyllabic content words, primarily
stressed syllables in polysyllabic function words (auxiliaries, conjunc-
tions, pronouns, and prepositions) and secondarily stressed syllables
in compound words get secondary stress.

3. Unstressed syllables of polysyllabic words and monosyllabic function
words are unstressed.

In section IV.1.4 a more elaborate example is presented to illustrate how
Groves’ rules are implemented.

1http://github.com/manexagirrezabal/zeuscansion

http://github.com/manexagirrezabal/zeuscansion
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(b) Pronunciation lexicon and out-of-vocabulary word-stress guesser

To calculate the lexical stress of words necessary for Groves’ rules, the dic-
tionaries mentioned in section III.6 are used: The CMU pronunciation dic-
tionary [Weide, 1998] and NETtalk [Sejnowski and Rosenberg, 1987]. The
system first attempts to locate the stress pattern in the smaller NETtalk
dictionary (20,000 words) and then falls back to using CMU (125,000 words)
if the word is missing in NETtalk. The merged lexicon, where NETtalk pro-
nunciations are given priority, contains about 133,000 words.

In the event that a word is found in neither the NETtalk lexicon nor the
CMU dictionary, the stress pattern of the word is guessed using a system
that is based on finite-state technology (FST), which relies on the hypothesis
that similarly spelled words have the same stress pattern.

(c) Foot division system

The final subtask is to divide a line’s stress pattern into feet, for which a
scoring system is used. The goal is to return the meter that the whole poem
follows and to that end, the average stress value of each syllable position
is calculated for the whole poem. The scoring system is used to resolve
ambiguity cases and gives priority to triple meters over duple meters. More
details are given below.

IV.1.2 General design

The structure of the system is divided into the subtasks shown in figure
IV.1. It starts with preprocessing and tokenization, after which words are
part-of-speech tagged. Following that, the lexical stress pattern for each
word is found, guessing the stress patterns for any words not present in
the dictionary. After these preliminaries, Groves’ scansion rules are applied
to know the prosodic stress and some cleanup of the result is done. Finally,
ZeuScansion calculates the average line stress pattern, which later is divided
into feet.

The toolchain itself is implemented as a chain of finite-state transducers,
each of them written using the foma2 toolkit [Hulden, 2009], save for the
part-of-speech tagger which is a Hidden Markov Model (HMM) implemen-
tation [Halácsy et al., 2007]. The programming language Perl is used as a
glue language to communicate between the components.

2https://foma.googlecode.com
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English poetry
text

Tokenizer

POS-tagger

Groves' scansion rules

Cleanup

Poem's meter

Are the words in
the dictionary?

Y

Closest word
finder

N
Global Analysis System

Figure IV.1: Structure of ZeuScansion

IV.1.3 Part-of-speech tagging and lexical stress assignment

After tokenization,3 the part-of-speech (POS) tags of the words of the poem
are obtained. For the POS-tagger, the software Hunpos4 [Halácsy et al.,
2007] was used trained with the Wall Street Journal English corpus [Mar-
cus et al., 1993]. While other more general corpora might be more suitable
for this task, the only need is to distinguish between function and non-
function words, and thus performance differences are slight between tagger
implementations. The evaluation of the HMM-based tagger and the function
word/content word classifier can be found in the table IV.1. The evaluation
environment from Tjong Kim Sang and Buchholz [2000]5 was used.

Once the first process is completed, the system starts applying Groves’

3The tokenizer’s code can be found in https://code.google.com/p/foma/wiki/FAQ
4https://hunpos.googlecode.com
5http://www.cnts.ua.ac.be/conll2000/chunking/

http://www.cnts.ua.ac.be/conll2000/chunking/
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Table IV.1: POS-tagger and FW/CW classifier evaluation in the CoNLL-
2000 dataset.

Tagger Precision Recall F1-Score

POS-tagger 94.97 92.85 93.61
FW/CW predictor 99.61 99.61 99.61

rules. This process is encoded as finite-state transducers. To apply the rules,
however, the stress pattern of each word is supposed to be known. Here,
as mentioned above, the system resorts to a heuristic for assigning lexical
stress to out-of-vocabulary words.

As previously mentioned, the strategy used to analyze such words was
to find a ‘close’ neighboring word in the dictionary, relying on an intuition
that words that differ very little in spelling from the sought-after word are
also likely pronounced the same way, or, at the very least, exhibit the same
stress pattern.

In order to find the so-called ‘closest word’ in the dictionary, a cascade of
finite-state transducers from the existing dictionaries is built in such a way
that, given an input word, it will output the most similar word, according to
spelling, using a metric of word distances that have been calculated for the
purpose. These transducers will perform small specific changes (substitution,
insertion, and deletion) in the input word, such as:

• Change one vowel

• Change one consonant

• Change two vowels

• Change one vowel and one consonant

• Change two consonants

Before performing any of these changes, the unknown word is divided
into two parts, where the second part represents roughly the last syllable.
Then, the aforementioned changes are performed in each part of the word.
If, when performing any one of those changes, there is an existing word, the
system will return that word and not proceed with the other changes. For
example, in the following line from Shakespeare’s Romeo and Juliet :

And usest none in that true use indeed
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there is the word usest, which does not appear in the dictionaries (the
archaic second-person singular simple present form of the verb use). The
process of the closest word finder would begin with the word splitter, which
would return “u.sest”. Then, it would map this word to all possible words
produced by changing just one vowel at the beginning, at the end, or chang-
ing one consonant. In this example case, after performing some of these
changes the closest match will be found according to the scheme above:
wisest and assume that its lexical stress matches that of usest—this is
found by changing one vowel and inserting a consonant at the beginning of
the word.

These transducers should be correctly ordered—an earlier transducer in
the cascade will have priority over later ones. In the cascade, the dictionaries
are also included as the very first mapping. If the word is not found in the
dictionary, subsequent transducers perform the various mappings, filtering
their outputs in such a way as to be constrained against possible words
in the dictionary. The actual order in the cascade was determined based on
the precision achieved. Cross-validation with against the NETtalk dictionary
was used to calculate this precision against each ordering.

To illustrate this ordering, consider a pair of transducers, one performing
just one vowel change and the other changing only one consonant. If the
first transducer can guess the correct word in, say, 90% of the cases and the
other one in 10% of the cases, the vowel transducer will be ordered first in
the cascade, and the consonant transducer second. The final order of the
transducers in ZeuScansion is:

1. Pronunciation dictionary.

2. Change one vowel at the left part.

3. Change one consonant at the left part.

4. Change two vowels at the left part.

5. Change one vowel and one consonant at the left part.

6. Change two consonants at the left part.

7. Change one vowel at the right part

8. Change one consonant at the right part.

9. Change two vowels at the right part.
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10. Change one vowel and one consonant at the right part.

11. Change two consonants at the right part.

Listing IV.1: Foma code of the transducer that finds similarly spelled words.

1 %DICT: Transducer that accepts words i f they are in the

dictionary

2 %BEFORECHANGE: Adds vertical bar to mark the last syllable

3 %AFTERCHANGE: Removes the vertical bar

4 %VowChaBEF: Change one vowel i f it is before the mark

5 %VowChaAFT: Change one vowel i f it is after the mark

6 %ConChaBEF: Change one consonant i f it is before the mark

7 %...

8 %VowChaBEF .o. VowChaBEF: Change two vowels before the mark

9

10

11

12 foma > regex DICT ;

13

14 foma > regex [BEFORECHANGE .o. VowChaBEF .o. AFTERCHANGE ];

15 foma > regex [BEFORECHANGE .o. ConChaBEF .o. AFTERCHANGE ];

16

17 foma > regex [BEFORECHANGE .o. VowChaBEF .o. VowChaBEF .o.

AFTERCHANGE ];

18

19 foma > ...

20

21 foma > regex [BEFORECHANGE .o. [[ VowChaAFT .o. ConChaAFT] |

[ConChaAFT .o. VowChaAFT ]] .o. AFTERCHANGE ];

22 foma > regex [BEFORECHANGE .o. ConChaAFT .o. ConChaAFT .o.

AFTERCHANGE ];

23

24 foma > save stack close -word -finder.fst

25

26 bash -user$ flookup -a close -word -finder.fst

IV.1.4 Groves’ rules

Once we have obtained the lexical stress for each word, Groves’ rules are
applied using a finite-state transducer built from replacement rules [Beesley
and Karttunen, 2003] that encodes each step in the rules.

Groves’ rules dictate that the primarily stressed syllable in content words
will maintain primary stress. In polysyllabic function words, the syllable
carrying primary lexical stress will be assigned secondary stress. Secondary
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stresses in polysyllablic content words will maintain secondary stress. All
other syllables will be unstressed.

The input for these transducers is a string with this structure: “word+POS”.
The output will be the stress-pattern of the word after applying Groves’
rules, written like: “word+stress+POS”. Let’s consider a line from the poem
The song of Hiawatha:

changed them thus because they mocked you

Analyzing the word because: the input for the transducer that encodes
Groves’ rules would be “because+IN”. The lexical resources would locate
the word in the dictionary and this would return that the second syllable
carries primary stress and that the first syllable is unstressed. After applying
the prosodic stress rules, the system would return that the second syllable
should receive secondary stress (instead of the original primary) as the input
word is a polysyllabic function word. Hence, the output of the transducer in
this case is “because+x\+IN”.

The last step is to remove all the material not strictly required for work-
ing with stress patterns. In the cleanup process, a transducer removes ev-
erything before the first + character and everything after the second +
character. It then removes all the + characters, so that the only result is the
bare stress structure of the input word.

because+x\+IN → x\

IV.1.5 Global analysis

After the stress rules have been applied and stressed syllables of each line
are known, the meter inference process starts. To this end, the entire poem’s
average stress structure is calculated. This is encoded by a vector of syllable
positions, whose value increments depending on the syllable’s stress in each
line. The pseudocode of the average stress calculator is as follows:

Listing IV.2: Pseudocode of the average stress calculator.

1 vector [1.. nsylls ]=0

2 foreach line (1.. nlines) {

3 foreach syllable (1.. nsylls) {

4 i f stress(syllable) == /

5 vector[syllable] = vector[syllable] + 2

6 i f stress(syllable) == \

7 vector[syllable] = vector[syllable] + 1

8 }

9 }
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This process is illustrated with the poem No. 11 from “The song of
Hiawatha” by Henry Wadsworth Longfellow:

(1) Barred with streaks of red and yellow
(2) Streaks of blue and bright vermilion
(3) Shone the face of Pau-Puk-Keewis
(4) From his forehead fell his tresses
(5) Smooth and parted like a woman’s
(6) Shining bright with oil and plaited
(7) Hung with braids of scented grasses
(8) As among the guests assembled
(9) To the sound of flutes and singing
(10) To the sound of drums and voices
(11) Rose the handsome Pau-Puk-Keewis
(12) And began his mystic dances

The stress values for each line are the following:

(1) /x\x/x/\
(2) \x/x/x/x
(3) /x/x?

(4) xx/\/x\x
(5) /x\xxx\x
(6) \x/x/x\x
(7) /x\x\x\x
(8) /x\x\x\x
(9) xx/x\x\x
(10) xx/x\x\x
(11) /x/x?

(12) xx\x/x\x

Syllable 1 2 3 4 5 6 7 8

Count (stressed) 14 0 19 1 14 0 12 1
Normalized 0.74 0 1 0.05 0.74 0 0.63 0.05

Stress / x / x / x / x

Table IV.2: Each syllable’s average stress value calculation.

The numbers in table IV.2 represent each syllable’s stress over the entire
poem. The numbers in the second row show the total sum of each syllable
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position’s stress value, calculated following the method listing IV.2. The
values from the third row are the values from the previous row, normalized
against the highest value. In figures IV.2 and IV.3 a graphical representation
of these last numbers is shown based on an analysis of Shakespeare’s Sonnets
and Longfellow’s The song of Hiawatha. As for the meter inference process
two levels of stress are needed, a cutoff value of 0.5 is used: if the normalized
average stress for a syllable is greater than this, it is assigned the label
‘stressed’ and otherwise ‘unstressed’.

For this calculation, it is assumed that all the lines contain the same
number of syllables. This naturally leads to difficulties with certain works
with differing syllable counts per line (such as Phantasmagoria and other
poems by Lewis Carroll). The interesting problems surrounding proper nor-
malization and treatment of mixed-line poems is set aside to future work.

Figure IV.2: Average stress for each syllable in Shakespeare’s Sonnets. Be-
cause of the poems’ regular iambic structure, it is remarkable the rising
patterns in the 1-2, 3-4, 5-6, 7-8, 9-10 syllables.

After the above steps, the system attempts to divide the average stress
pattern into feet with the goal of producing a global analysis of the poem. In
the previous example (/x/x/x/x), the optimal meter to assign is trochaic
tetrameter, a sequence of four trochees ([/x][/x][/x][/x]). In the case
that the assigned meter was, e.g., iambic, the first and last stresses would not
fit (/[x/][x/][x/]x). In other cases foot-division can be more challenging.
Consider, for instance, the analysis of a line containing 12 syllables:

/xx/xx/xx/xx

This verse could be analyzed as consisting mainly of (1) dactyls [/xx], (2)
anapests [xx/], (3) trochees [/x] and (4) iambs [x/]. Dactylic and trochaic
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Figure IV.3: Average stress for each syllable in Henry Wadsworth Longfel-
low’s The Song of Hiawatha. Because of the poems’ trochaic nature, it is
worth mentioning the dropping patterns in the 1-2, 3-4, 5-6 and 7-8 sylla-
bles.

Foot Pattern No matches Score

Dactyl /xx 4 6
Anapest xx/ 3 4.5
Trochee /x 4 4
Iamb x/ 3 3

Table IV.3: Hypothetical feet for the meter in the example.

patterns appear four times in the line, however, anapestic or iambic patterns
three times. By choosing the most frequent, ZeuScansion has to decide which
pattern is the poem following, as both the dactyls and trochees appear four
times. For such cases, a scoring system is used for selecting the appropriate
pattern: a weight of 1.0 is given for hypothetical disyllabic patterns, and
a weight of 1.5 for trisyllabic ones. In this example, this would yield the
judgment that the structure is dactilyc tetrameter (1.5 × 4 matches = 6).
This example is illustrated graphically in table IV.3.

IV.2 Supervised learning

As we talk about supervised learning paradigms, the models need data to
learn patterns from. This section is divided in four subsections. In the first
part I show the feature templates used for learning and in the next three



60 NLP techniques for scansion

subsections, I discuss different sets of models: greedy prediction, structured
prediction and neural networks.

IV.2.1 Modeling and features

When working with statistical learning methods, the representation of the
data that is going to be learnt is important. These representations vary from
problem to problem, but the process of extracting this information is often
similar.

The current task is to perform scansion, given a poem. Hence, the goal
is to assign stress values to syllables from a poem. The problem of assigning
stress to each syllable can be then seen as

f(syll1, syll2, ..., syllN ) = (stress1, stress2, ..., stressN )

The function f will get a sequence of syllables as input and will return
a sequence of N values ({0, 1}N or {x, /}N ), defining each element, stressi,
as a stressed or unstressed syllable.

A simple method for calculating these stresses, would be to calculate the
stress value for each syllable by simply checking the conditional probability
of a stress value, given a syllable. This is what one of the baselines, Naive
Bayes, performs.

x1 = P (stressi = /|syllable = sylli)
x2 = P (stressi = x|syllable = sylli)

Then, for each syllable in a sentence, the highest probability from x1 and
x2 is picked.

Current algorithms used in machine learning rely on extended features
that give more information about the data in question. For example, the
lexical stress of a syllable is informative for this task, as it was used for
ZeuScansion. In the rule-based system, it was also seen that knowing the
POS-tag of the current word is a good hint, as content words receive gener-
ally more stress than function words.

Below, the set of feature templates used in the machine learning based
scansion systems are shown, which include basic and additional features:

(a) Basic feature templates. They are (almost) language agnostic:



IV.2 Supervised learning 61

• Syllable number within the word (SNOW): This specifies the cur-
rent syllable position within the word. E.g., for the word ha-zel,
whose lexical stress is /x, the specification of the current syllable
gives information about the lexical stress of the current syllable.

• Syllable number within the line (SNL): This feature helps to model
the sequence in many types of specially metered lines. It can resolve
potentially ambiguous cases, e.g. the word re-cord. It’s lexical stress
can be both x/ and /x, if it is a verb or a noun, respectively.
Without knowing the part-of-speech tag, if we know that this word
appears in the last two positions of a trochaic poem, we can ensure
that it’s lexical stress will be /x.

• Number of syllables in the line (NSL): The combination of this
feature and the previous one helps in identifying the syllables at
the end of a line which are usually more regular because of rhyme
patterns.

• Syllable phonological weight (SWEIGHT): Around a third of the
world’s stress systems are weight sensitive [Ryan, 2016]. This fea-
ture relies on the cross-linguistic generalization that states that
heavier syllables6 attract stress and lighter syllables are commonly
unstressed [Hayes, 1995, Gordon, 2002, 2004]. Because of that, this
information could be useful in scansion systems, as reflected in
the poem “To Autumn” by John Keats, “to swell the gourd and
plump the hazel shells”.7

• The last 5 characters of the word (last character, last two charac-
ters, last three characters, last four characters, and last five char-
acters) (LC1. . . LC5): As primary stress of the words in English is
usually concentrated in the last syllables of the word (roughly the
last three syllables) [Hayes, 1995, p. 50], the last characters were
expected to be informative. Although it could be better to use the
last characters of the syllable, as it was done in Estes and Hench
[2016], in this work the last characters of the word are used, so as
to be more agnostic about the language in question.

• Word length (WLEN): This was expected to be an informative
feature.

(b) Additional feature templates:

6Heavy syllable: The syllable has a coda or ends in a tense vowel.
7In this example an underlined syllable represents a heavy syllable.
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• Word: As the main basic units of the text, words are used as fea-
tures.

• Syllable: Some syllables are almost always stressed, which could
help in the inference of stress patterns. For example, in Shake-
speare’s Sonnets, the syllable “sire” is used 10 times and in all of
them it appears as stressed.

• POS-tag: The part of speech is a key element to decide whether a
word is a content word or function word, which affects the stress
in many syllables, as in the following excerpt from The voice by
Thomas Hardy: “call to me call to me”, both the verb call and the
pronoun me are stressed, but the pronoun loses the prominence
when read aloud because it is not a content word. Previous works
on poetry analysis, such as Groves [1998], rely on this information.

• Lexical stress (LS): Knowing the lexical stress sequence in a phrase
is an important hint for deducing the rhythmic pattern of a line of
poetry. The lexical stress of the current word is included. This lexi-
cal stress is calculated by using the NETTalk dictionary [Sejnowski
and Rosenberg, 1987] and when treating out-of-vocabulary words,
their stress is calculated using the SVM implementation given in
Agirrezabal et al. [2014b].

These last four features are extended to include their context as well.
For each syllable in the data, the current syllable, syllable[t], is taken into
account together with its previous and next 10 syllables, syllable[t±10]. In
the case of words, part of speech tags, and lexical stresses the ± 5 surround-
ing elements are included. This was done with the intuition that each word
could have approximately two syllables.

To conclude about feature information, an example from a line of poetry
will be presented together with the feature template values. Let us consider
a line from Scrambled Eggs Super!, by Dr. Seuss [Seuss, 1953]:

I really cooked something worth talking about

The feature templates per syllable of this line are shown in table IV.4.
Some attributes like Syllable, Word, Lexical stress, or POS-tag, are extended
with the surrounding elements as learning features to model the context. As
mentioned above, the next and previous five elements are used in the case
of words, lexical stresses and POS-tags. The context of syllables is modeled
with ten surrounding elements.
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Syllable I real ly cooked some thing worth talk ing a bout

Word I really really cooked something something worth talking talking about about

Lexical stress ’ ’ ’ M’ ’ ’ ’ M’ M’ ’ ’

POS-tag PRP RB RB VBN NN NN IN VBG VBG IN IN

Syllable no. word 0 0 1 0 0 1 0 0 1 0 1

Syllable no. line 0 1 2 3 4 5 6 7 8 9 10

No. syllables line 11 11 11 11 11 11 11 11 11 11 11

Word length 1 6 6 6 9 9 5 7 7 5 5

Syllable weight 0 1 0 1 0 1 1 1 1 0 1

Last char I y y d g g h g g t t

Last 2 chars #i ly ly ed ng ng th ng ng ut ut

Last 3 chars ##i lly lly ked ing ing rth ing ing out out

Last 4 chars ###i ally ally oked hing hing orth king king bout bout

Last 5 chars ####i eally eally ooked thing thing worth lking lking about about

Class x / x x / x x / x x /

Table IV.4: Feature templates for a line from “Scrambled Eggs Super!” by Dr. Seuss. Syllables are extended with
the ± 10 elements and the next three elements (words, lexical stresses and POS-tags) with the ± 5 elements.
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IV.2.2 Single/greedy prediction

In this subsection, greedy predictors are explored, which are the ones that
classify each instance independently and do not find the optimal resulting
sequence.

IV.2.2.1 Naive Bayes

Naive Bayes methods are a set of supervised algorithms [John and Langley,
1995] based on the well-known Bayes’ theorem with the naive assumption
of independence between every pair of features. Under this assumption, cal-
culating the probability of a class y generating a set of features is performed
by multiplying each of the conditional probabilities. By applying Bayes’ the-
orem we have that:

P (y|x1, x2, ..., xn) =
P (x1, x2, ..., xn|y)× P (y)

P (x1, x2, ..., xn)
(IV.1)

and as all the features are assumed to be independent, the probability of an
instance based on its attributes, becomes simply

P (y|x1, x2, ..., xn) =
P (x1|y)× P (x2|y)× . . .× P (xn|y)× P (y)

P (x1, x2, ..., xn)
(IV.2)

Figure IV.4: The output variable y is dependent on a set of features
x1, x2, . . . xN and these features are assumed to be independent.

This classifier has been used in several tasks [Manning and Schütze,
1999], such as Word Sense Disambiguation [Gale et al., 1992]. Nowadays, it is
used as a popular method as baseline of different natural language processing
problems, although its performance can achieve comparable results as other
more complex algorithms [Pang et al., 2002].
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In this work, I have used an implementation from the Weka software
suite [Hall et al., 2009, Witten et al., 2016].

IV.2.2.2 Perceptron

The perceptron [Rosenblatt, 1958] is a very simple algorithm for binary
classification and is inspired by biological neurons. Its structure is similar to
some specific parts of Neural Networks. The perceptron has a set of inputs
and a binary output, as it can be seen in figure IV.5. The output of this unit
can be calculated by the dot product of the input vector with the weights
vector and then later applying the Heaviside step function8 as activation:

Figure IV.5: Structure of a perceptron.

out =

n∑
i=0

xiwi

y = H(out)

(IV.3)

The idea behind the perceptron was formulated by McCulloch and Pitts
[1943], and Rosenblatt [1958] presented the Perceptron including a simple
algorithm to learn its weights.

Although at the beginning it seemed to be promising, Minsky and Papert
showed that not all the problems can be solved using a Perceptron, such
as, the XOR problem [Minsky and Papert, 1969]. The algorithm, shown

8The Heaviside step function is a simple function that for any negative number returns
0, otherwise it returns 1.
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in listing IV.3, will get a solution only if the two sets of data are linearly
separable. This is the basic idea of a Perceptron, with its simple learning
algorithm. When this learning method is used, the Perceptron is referred as
Vanilla Perceptron.

Listing IV.3: The Perceptron learning algorithm.

1 W = [0.0, 0.0, 0.0, 0.0, 0.0] #Weight vector

2 X = [[1,1,1,1,1],[0,0,0,0.5,0],...] #Input instances

3 Y = (0, 1, 1, 0, ... 1) #Gold labels

4 for i in (1..n):

5 prediction = classify(X,W,i)

6 i f prediction == Y[i]:

7 do nothing

8 else :
9 i f prediction == 1:

10 w = w - X[i]

11 else :
12 w = w + X[i]

The Perceptron has two main disadvantages. The first is that it needs
linearly separable data. The second problem is that the order of instances
can affect to the resulting separating hyperplane. For example, let us sup-
pose to have a corpus composed by 1000 instances and a model that is able
to learn a very good separating hyperplane in the first 950 instances. If the
last 50 instances are outliers, the good hyperplane learned until this point
will be completely lost. To solve these two problems, a commonly used solu-
tion is to average the way in which each instance affects to the hyperplane.
This is performed in the Averaged Perceptron [Freund and Schapire, 1999,
Daumé III, 2012].

The Perceptron classifier has been extensively used in NLP, e.g. in Collins
and Roark [2004], Shen and Joshi [2005], Carreras [2005], Sak et al. [2007],
Alegŕıa et al. [2008], Jiang et al. [2008], Arrieta et al. [2014], Otegi et al.
[2016].

In this work, I have used the Averaged Perceptron. A publicly avail-
able implementation of this Perceptron can be found in this repository at
Bitbucket.9

IV.2.2.3 Support Vector Machines

Support Vector Machines [Cortes and Vapnik, 1995, Hsu et al., 2003] are
supervised learning models for performing classification or regression analy-

9https://bitbucket.org/mhulden/pyperceptron

https://bitbucket.org/mhulden/pyperceptron
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sis. It performs non-probabilistic linear binary classification. This technique
represents each instance of a problem in an n-dimensional hyperplane and it
tries to find the separating (n− 1)-dimensional hyperplane between the two
classes. Theoretically, if data points are linearly separable, there are infinite
separating hyperplanes, but the SVM will maximize the margin between the
two sets of instances. As it was said before, each instance is represented in
an n-dimensional space, representation that can be found with the following
formula

y(x) = Φ(x) + b (IV.4)

where Φ(x) is a feature-mapping function that taking x as input argument,
returns a point in the n-dimensional space. In such space there will be two
separating hyperplanes

[Φ(x) + b = −1] (IV.5)

[Φ(x) + b = 1] (IV.6)

that will divide it in two subspaces. These separating hyperplanes (equa-
tions IV.5 and IV.6) can be easily appreciated in figure IV.6. Following the
linear separability assumption, the classification of new instances is straight-
forward, then.

f(x) =

{
class = 1, Φ(x) + b > 0

class = 0, Φ(x) + b < 0
(IV.7)

Unfortunately, linear separation is not always possible, and in that case,
a solution is to use a soft-margin, so that some errors are accepted. In order
to use soft-margin, the maximizing formula must be extended by using the
hinge-loss function. The hinge loss is an approximation to the misclassifica-
tion error, which means that wrongly classified instances are penalized based
on their distance from the separating hyperplane. Another solution for the
non-separability problem is to use the so-called kernel trick. In this way, the
original n-dimensional instances are mapped in a higher dimensional space
and linear separability is often achieved. Some of the commonly used kernel
functions are polynomial, Radial Basis Function (RBF) and sigmoid.

Support Vector Machines work well when the feature set is large, e.g.
when bag-of-word models are used. Because of their appropriateness, SVMs
have been widely used in Natural Language Processing, for instance, in text
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Figure IV.6: Support Vector Classification in a two-dimensional space.

categorization [Dumais et al., 1998], part-of-speech (POS) tagging [Nak-
agawa et al., 2001, Mohan et al., 2010], named-entity recognition (NER)
[Isozaki and Kazawa, 2002, Kazama et al., 2002], chunking [Kudo and Mat-
sumoto, 2001], dependency analysis [Yamada and Matsumoto, 2003] or in-
formation extraction [Li et al., 2005].

In this work the LibLinear and LibSVM packages [Fan et al., 2008, Chang
and Lin, 2011] included in the Weka software suite [Hall et al., 2009, Witten
et al., 2016] have been used.

IV.2.3 Structured prediction

We now get involved in structured prediction methods, where given an input
sequence an output sequence must be produced. This output sequence will
be the optimal result from a set of possible outputs. The reader can refer to
subsection II.3.2 to see the advantages of doing predictions jointly instead
of doing them independently.
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IV.2.3.1 Hidden Markov Models

Hidden Markov Models (HMM) are simple and useful models [Rabiner,
1989, Bengio, 1999] to solve sequence-to-sequence problems. Under Hidden
Markov Models, output tags are considered states and this output state
sequence is modeled using automata.

When there are dependencies between outputs, or states, a problem can
be represented as a Markov process, which consider a state dependent only
on its previous state (Markov assumption) with a probability p. Such process
will consist of

• M states —the number of possible outputs.

• A transition matrix of size M ×M —the transition probabilities be-
tween different states.

• M initial probabilities —probability of starting at each state.

Figure IV.7: Temporal classification with Hidden Markov Models.

Then, the output sequence is represented as a Markov process, but how
does this process relate with the elements that are observed—i.e. data?
As it is represented in figure IV.7, the upper part shows the interaction
between outputs at each timestep ([yt−1 → yt] and [yt → yt+1]) and these
probabilities will be got from the transition matrix. Under the outputs, the
observed data can be seen (. . .xt−1, xt, xt+1. . . ).

In order to calculate the probability of associating a state sequence with
an input observed sequence, the probability between the data and the states
at each timestep must be considered. For this calculation, an additional table
is needed, that includes the so-called emission probabilities, or the probabil-
ity of generating, i.e. emitting, an instance given a specific state (P (xt|yt)).
With these elements, a complete sequences probability can be calculated by
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using the initial probabilities, emission probabilities and transition proba-
bilities.10

P (y1..N , x1..N ) =

seqlength∏
t=0

P (yt−1|yt)︸ ︷︷ ︸
Transition probability

× P (xt|yt)︸ ︷︷ ︸
Emission probability

(IV.8)

Figure IV.8: POS tagging using a second-order Hidden Markov Model.

Usually, in practical applications such as POS-tagging, higher order Hid-
den Markov Models are used, where the probability of a state is given by
it’s previous n elements (n-th order HMM). In figure IV.8, we can see which
elements are considered in order to calculate the POS-tag of a word us-
ing a second order HMM. Summarizing, these are the assumptions made in
HMMs:

1. The Markov assumption: The probability of a state is just dependent
on the previous state (or previous n states in the case of n-th order
models).

2. The stationarity assumption: The transition probabilities going from yi
to yi+1 in the model are always the same, independent of the moment
in which it happens.

3. The observation independence assumption: There is no conditional
dependency between the observations, i.e., they are supposed to be
independent.

Being stated these assumptions, as stated by Rabiner [1989], these are
the main problems of HMMs:

1. Decoding

10Initial probabilities are used when t = 0.
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2. Inference

3. Parameter estimation

Decoding

This involves calculating the probability of an observed sequence taking as
input the model and the sequence of hidden states. The forward procedure of
the forward-backward algorithm (dynamic programming), solves this prob-
lem [Rabiner, 1989]. Using this procedure, the formula IV.8 is applied.

Inference

It is the optimal sequence given a model and an observed variable sequence.
When a sequence of elements is given and the most likely hidden state
sequence must be returned, according to a model, the maximum over all
possible state sequences has to be calculated. This can be solved calculating
the probabilities of all possible sequences and returning the maximum over
all. The Viterbi algorithm [Viterbi, 1967, Forney, 1973] solves this problem
efficiently.

Parameter estimation

The parameters of Hidden Markov Models (initial probabilities, emission
probabilities and transition probabilities) are learned easily by using the
maximum-likelihood estimation principle (MLE) as it can be seen in equa-
tions IV.9, IV.10 and IV.11:

P (yt = a) =
Count(yt = a)

Count(yt)
(IV.9)

P (yt−1 = a|yt = b) =
Count(yt = b, yt−1 = a)

Count(yt = b)
(IV.10)

P (xt = s|yt = a) =
Count(yt = a, xt = s)

Count(yt = a)
(IV.11)

The use of Hidden Markov Models is typical in Natural Language Pro-
cessing as a simple solution to sequential tagging problems [Brants, 2000,
Halácsy et al., 2007, Ponomareva et al., 2007], but also for speech recognition
[Young and Young, 1993, Erro et al., 2010].
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In this study, Hunpos, a publicly available implementation of HMMs
[Halácsy et al., 2007] was used, whose code can be downloaded from Google
Code.11

IV.2.3.2 Conditional Random Fields

A Conditional Random Field [Lafferty et al., 2001, Sutton and McCallum,
2011] is a statistical model that is used for structured prediction. As Logistic
Regression models are to the Naive Bayes model, linear-chain CRFs are
considered the discriminative counterpart of Hidden Markov Models [Sutton
and McCallum, 2011, p. 19], as it can be seen in figure IV.9.

SEQUENCE

SEQUENCE

CONDITIONAL CONDITIONAL
Naive Bayes

Logistic Regression

Hidden Markov Models

Conditional Random Fields

Figure IV.9: Conditional Random Fields are the conditional counterpart of
Hidden Markov Models and the sequential version of the Logistic Regression
model [Sutton and McCallum, 2011, p. 19].

CRFs model the conditional distribution P (y|x) and not the joint P (y, x)
distribution, as the HMMs do. This makes it a much simpler and more effi-
cient approach because it focuses on the differences among the instances of
different classes. Focusing on the differences, the number of combinations of
possible hidden/observed mappings is significantly lower. In HMMs genera-
tive learning is used for discrimination. When the dimensionality of x is very
large or it has complex dependencies, constructing a probability distribution
over it (P (x)) is difficult in the generative classifier.

11http://hunpos.googlecode.com

http://hunpos.googlecode.com
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Because of the discriminative nature of CRFs, more features can be
easily incorporated in the models. The addition of extended features for the
representation of the input in CRFs is a crucial element for the success of
these models. The features are represented as feature functions fk, dependent
on the current hidden state, previous hidden state and any element from the
observed sequence. The xt from equation IV.12 should be understood as any
element from the observed sequence (x) [Sutton and McCallum, 2011, p. 23].

P (str1..N |syll1..N ) =
1

Z(x)

T∏
t=1

exp

{
K∑
k=1

θk ∗ fk(yt, yt−1, xt))

}
(IV.12)

Z(x) =
∑
y

T∏
t=1

exp{
K∑
k=1

θk ∗ fk(yt, yt−1, xt))} (IV.13)

In the same way as in HMMs, parameter estimation is an important part
of CRFs. This is done by Maximum Likelihood by defining a conditional log
likelihood function

l(θ) =
N∑
i=1

logp(y(i)|x(i)) (IV.14)

where if we join equations IV.12 and IV.14 we will get the following expres-
sion.

l(θ) =

N∑
i=1

T∑
t=1

K∑
k=1

θkfk(y
(i)
t , y

(i)
t−1, x

(i)
t )−

N∑
i=1

logZ(x(i)) (IV.15)

A problem concerning Machine Learning, and thus, CRFs, is overfitting.
So that to overcome it, different techniques are used, for example a regular-
ization parameter. This parameter adds a penalization to all features so that
to avoid some specific features to dominate without a motivated reason. A
regularization parameter can be added in this log-likelihood formula.

Given the log-likelihood function, the goal now is to maximize it along
its derivative (gradient). So that to do this, quasi-Newton methods such as
the Limited-memory BFGS are used [Nocedal and Wright, 2006].

CRFs have been widely used in NLP, especially in Named Entity Recog-
nition [McCallum and Li, 2003, Ponomareva et al., 2007] and also as a layer
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of a Neural Network model, as in Lample et al. [2016], but also in other
disciplines, such as in bioinformatics [Sato and Sakakibara, 2005].

In this work I have employed the publicly available CRF model im-
plementation CrfSuite12 [Okazaki, 2007], and in order to be usable from
python, I have used pyCRFsuite13, a wrapper for Python.

IV.2.4 Neural Networks / Deep Learning

A Perceptron can work well with linearly separable problems, such as the
AND, OR or NOT logical operations. However, it fails to correctly perform
in the case of the XOR operation [Minsky and Papert, 1969], as it was seen
before. In order to solve this problem, Multilayer Perceptrons were proposed,
which could work with the XOR operation and other non-linearly separable
classification problems. These complex systems evolved until the current
state-of-the-art Deep Learning methods [Graves, 2012].

IV.2.4.1 Multilayer Perceptron

The Multilayer Perceptron is a Feed-forward Neural Network [Minsky and
Papert, 1969, Rumelhart et al., 1988a]. The name feed-forward comes from
the fact that its connections do not cycle, they always go forward from
the input through all mathematical operations until the desired output is
reached. The network is composed of a set of nodes that perform a linear
computational operation such as,

A = Wx+ b (IV.16)

where W represents a weight matrix, x is the input vector and b is a bias
term. This calculation is identical to the one performed in the Perceptron
save for the activation function, which is different.

The goal is to get a black box with a set of nodes performing simple
computational operations and to solve (almost) any computational problem.
The hard task is the learning process of the necessary weights (W ).

A simple version of a feed-forward neural network is a single-layer per-
ceptron network, which includes a set of input values and the result is a set
of outputs. The special case of a network that consist of only one layer, a sin-
gle output value and this value is calculated by a linear activation function

12http://www.chokkan.org/software/crfsuite/
13https://github.com/jakevdp/pyCRFsuite

http://www.chokkan.org/software/crfsuite/
https://github.com/jakevdp/pyCRFsuite
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—specifically, the Heaviside step function14— is the Perceptron. A single-
layer neuron with a logistic function15 for the activation is identical to the
logistic regression model [Bishop, 2006].

Figure IV.10: Structure of a common Neural Network.

In more complex neural networks, such as the one showed in figure IV.10
nodes are organized in layers. The output values from nodes in layer i are
the input values to the nodes in layer i + 1. There is a set of weights that
controls the relevance of the connection between nodes on subsequent layers.
The outputs of neural networks are typically calculated by functions like the
logistic function, instead of using a step function, as the derivative of the
logistic function can be easily calculated. Feed-Forward Neural Networks are
models that are able to find non-linear patterns from data. Weight learning
is done by backpropagation [Rumelhart et al., 1985] [Bishop, 2006, p. 241-
244], which is an efficient technique for the evaluation of the gradient of an
error function E(w) for a feed-forward neural network.

A neural network can be understood as a graph of nodes that perform a
computation. Each of these nodes has a set of I inputs zi|i ∈ {1..I}. These
inputs are then multiplied by the nodes weights, wi|i ∈ {1..I} which results
in

aj =
I∑

i=1

wjizi + w
(1)
j0 (IV.17)

14The Heaviside step function is a simple function that for any negative number returns
0, otherwise it returns 1.

15A similar function as the Heaviside step function, but easily differentiable.
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and a function h() is applied to this

zj = h(aj) (IV.18)

where h(x) is an activation function like the hyperbolic tangent (equation
IV.19) or the sigmoid function (equation IV.20).

h(x) = tanh(x) =
ez − e−z

ez + e−z
(IV.19)

h(x) =
1

1 + e−x
(IV.20)

After defining the mathematical operations that will be made in the
network, we need to adjust the weights previously mentioned. These weights
are learned by minimizing the error in the data (x1, x2, . . . xN ). The error of
a neural network can be defined as a function that depends on the weights
of the input nodes.

E(w) =
N∑

n=1

En(w) (IV.21)

The gradient of the error function with respect to a weight wji is given
by its derivative:

∂En

∂wji
(IV.22)

The weights are then updated based on these derivatives and a pre-
specified learning rate, by the application of the delta rule. The error can
be minimized using gradient descent.

IV.2.4.2 Recurrent Neural Networks

Recurrent Neural Networks [Rumelhart et al., 1988a, Elman, 1990, Werbos,
1990] (RNN) are the generalization of Multilayer Perceptrons for sequential
data. They can be useful for structured prediction problems, such as se-
quence labelling, where a string of outputs must be returned given an input
sequence.

In Feed-forward Neural Networks like Multilayer Perceptrons there was
not any cycle between nodes. All connections were done in a forward direc-
tion. In Recurrent Neural Networks, this limitation is relaxed and connec-
tions are allowed making these models much more powerful and expres-
sive. In sequence-to-sequence problems, we are given an input sequence
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Figure IV.11: Example of a simple encoder-decoder machine translation sys-
tem.

x1, x2, . . . , xN and an output y1, y2, . . . , yN must be produced, for which
the following equation is iterated [Graves, 2012]:

ht = f(W hxxt +W hhht−1) (IV.23)

yt = g(W yhht) (IV.24)

In this formulation there are two important variables. The variable ht
(equation IV.23) represents the hidden representation of the memory at
timestep t, which will include all the collapsed information after analyzing a
sequence of elements x0 . . . xt. This memory is represented as a real number
vector and is calculated as a combination of the input element xt, weighted
with W hx, and the hidden representation at the previous timestep ht−1,
weighted with W hh. After calculating this, typically a non-linear activation
function, such as the sigmoid or the hyperbolic tangent, is applied (the f
function in the equation).

This memory ht can be used for prediction at each timestep (IV.24),
which will be multiplied by the hidden-to-output weights W yh and after
that an activation function g will be applied. Figure IV.12 shows an actual
example of this type of models. This is appropriate in tasks where predictions
must be made for each input element, such as, POS-tagging, named entity
recognition, . . . It was used in Xu et al. [2015].

Another typical model used for sequence modelling is the so-called encoder-
decoder architecture. Figure IV.11 shows how these models are used for ma-
chine translation. It encodes a sequence input using a RNN into a fixed-sized
vector, which is the dense representation of the input sequence x. This rep-
resentation is mapped into a target sequence by using another RNN, which
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Figure IV.12: Example of the use of a RNN giving an output for each input,
e.g., in a POS-tagger.

Figure IV.13: Example of an encoder, which encodes the input sequence in
a vector.

will decode the dense representation into the desired output. When learning,
error gradients are calculated based on the learning data and the produced
output. These gradients are propagated through all connections to the input
side [Werbos, 1990].

The advantage of this architecture is that there is no necessity of hav-
ing an output for each input, as the input is first mapped into an internal
representation which will generate the proper output. In order to do that,
the RNN calculates the dense representation c of the input sequence x and
it will start to generate a sequence y by making predictions:

h(t) = f(h(t−1), yt−1, c)

P (yt|yt−1, yt−2, . . . , y1, c) = g(h(t), yt−1, c)
(IV.25)

Following the definition in equations IV.23 and IV.24, RNNs can be
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Figure IV.14: Illustration of a RNN that, getting the output of an encoder
c, the current memory state and the previous outputs, produces an output
maximizing its probability.

graphically represented as recursively, as in figure IV.15, and this can be
unrolled for a finite sized input sequence (figure IV.16).

Figure IV.15: Traditional (recursive) representation of Recurrent Neural
Networks.

When checking the unrolled representation of the RNN, it can be seen
that the training procedure is the same as in other Neural Networks. It is
done by backpropagating errors, and in the RNN literature this is referred
to as backpropagation through time (BPTT) [Werbos, 1990].

This model, the Encoder-Decoder, was used in works like Sutskever et al.
[2014], Cho et al. [2014], Bahdanau et al. [2014], Kann and Schütze [2016].
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Figure IV.16: Representation of an unrolled Recurrent Neural Network.

Bidirectional RNNs

Until now, RNNs can be seen as a very powerful technique for prediction or
transduction when the input is a sequence. Their strength comes from the
fact that they model the previous elements in a sequence without making
use of the Markov assumption, and so allowing the models to remember
longer distance dependencies. A possible error is that some words may need
the right context information to work better. Let’s imagine that we have a
RNN that translates a sentence from Spanish to English:

Un banco es una entidad financiera

If we check the word banco in a dictionary, we will find at least two
possible translations, from which the most common would be “bank” or
“bench”. By taking a look at the previous words of banco, we cannot guess
the correct translation of the word,16 but if we take a look at the words in
the right context, by seeing entidad and financiera, the system would have
more information to disambiguate.

Bidirectional RNNs [Schuster and Paliwal, 1997] (BRNN) are models
that exactly perform in that way, because they analyze an input sentence in
both directions (forward and backward). That is the main basic idea, they

16“un” is the singular masculine determiner, equivalent to the determiner in English
“a”.
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analyze a sequence from the left to the right and from the right to the left,
and then the results are combined. This combination can be done in several
ways, such as, linear pooling [Berger, 2013], logarithmic pooling [Jacobs,
1995] or just concatenation.

Figure IV.17: Representation of a Bidirectional Recurrent Neural Network
that concatenates the output of the forward and backward RNNs.

As there are no interactions between the forward and backward RNNs,
they can be unfolded and trained in the same way as regular recurrent nets.

LSTM for Deep Learning

As the inputs to a RNN are given and processed throughout time, the in-
fluence of such input in the hidden layers and the resulting outputs can
either decay or blow up exponentially in long sequences. This problem is re-
ferred in the RNN literature as the vanishing gradient problem [Hochreiter
et al., 2001]. Several solutions have been proposed to this issue and a pop-
ular solution is the architecture named Long-Short Term Memory (LSTM)
[Hochreiter and Schmidhuber, 1997].

The LSTM architecture gets an input and saves the current memory
state just like in Recurrent Neural Networks. The difference between RNNs
and RNNs with LSTM is that in the later ones input, output and forget gates
(it, ot and ft in equation IV.26) are incorporated, in order to decide which
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information should be remembered and which should not. The mathematical
definition of an LSTM cell [Gers et al., 2000, Graves, 2013] is17

ft = σg(Wxfxt +Whfht−1 + bf )

it = σg(Wxixt +Whiht−1 + bi)

ot = σg(Wxoxt +Whoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σh(Wcxt + Ucht− 1 + bc)

ht = ot ◦ σh(ct)

(IV.26)

where xt is the input vector, ht the output vector and ct the cell state
vector. The functions σh and σg represent nonlinear operations, specifically
the hyperbolic tangent and the sigmoid. The operator ◦ is the element-wise
product. U and W are the parameter matrices to be learnt.

Figure IV.18: Long-Short Term Memory cell architecture.

IV.2.4.3 Embedding words or characters

As it has been seen, inputs to neural network models, either MLPs, RNNs
or RNNs with LSTM, must be numerical. In Natural Language Processing,
however, words or characters are a typical input, as we may want to work
with a word or sentence. The bag-of-words model was proposed as a simple
solution for this, where, given a vocabulary of M elements and an input
sequence of N elements T1, T2, . . . TN , this is represented as a bag of M
elements (vector of M elements), showing the frequency of each element in
the input sequence.

17from Wikipedia, accessed on 28 Nov, 2016



IV.2 Supervised learning 83

A better solution is to use word embeddings [Mikolov et al., 2013c,b],
where each word is represented in a dense D dimensional space. The most
important characteristics of these vectors is that similar words have similar
vectors. These representations are learned from untagged corpora and they
are used for modeling semantic information of words. In order to learn them,
current approaches rely on the distributional hypothesis [Harris, 1954]. Com-
mon software for training word embeddings include word2vec18 [Mikolov
et al., 2013a,b] and GloVe [Pennington et al., 2014].19

Deep Learning models that work with natural language commonly have
a primary embedding layer in order to get the numeric representation of an
input word. If pretrained word embeddings are incorporated, this embed-
ding layer returns the previously calculated vectorial representation of the
input word. When word embeddings are not available, these are randomly
initialized and their parameters are learned jointly for the task.

In this work, when pretrained word embeddings were needed, I have used
word2vec within the Gensim package20 [Řeh̊uřek and Sojka, 2010] to train
them.

IV.2.4.4 Software for Deep Learning

In this subsection some specific models that follow the basic architecture
introduced above are presented.

Frameworks

There are several frameworks that provide useful variables and functions
for the development of Neural Network architectures. These are the main
frameworks:

• DyNet [Neubig et al., 2017]

• Tensorflow [Abadi et al., 2016b,a]

• Theano [Theano Development Team, 2016]

• Blocks [Van Merriënboer et al., 2015]

• Caffe [Jia et al., 2014]

18http://word2vec.googlecode.com
19http://nlp.stanford.edu/projects/glove
20https://radimrehurek.com/gensim/

http://word2vec.googlecode.com
http://nlp.stanford.edu/projects/glove
https://radimrehurek.com/gensim/
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• Torch [Collobert et al., 2011]

• DeepLearning4J [DJD Team]

Recurrent Neural Network Language Models

Char-rnn is a software written in the Torch language that calculates re-
current neural network language models [Mikolov et al., 2010] which are
character based. [Karpathy et al., 2015]

Sequence to sequence Encoder-Decoder models

Sutskever et al. [2014] proposed a Machine Translation model based on an
Encoder-Decoder architecture and Bahdanau et al. [2014] an attention mech-
anism for it. This model has been implemented using several frameworks,
such as Blocks21 or Tensorflow.22 This model was used in the SIGMOR-
PHON 2016 shared task on Morphological Reinflection [Kann and Schütze,
2016] and it got impressive results [Cotterell et al., 2016]. This implementa-
tion was similar to Faruqui et al. [2015].

Bi-directional LSTM (Words+chars) + CRF layer

Lample et al. [2016] propose a complete independent architecture that ex-
tracts the information from the input graphemes and the joint information
that those graphemes have when they compose a word. Furthermore, it has a
CRF layer which takes into account the dependencies among outputs. This
model is used for Named Entity Recognition without the use of external
language-specific resources, such as gazetteers, POS-tags, . . . and it reaches
state-of-the-art performance in Named Entity Recognition in four languages.

Considering its architecture it fits perfectly for the task of poetry scan-
sion, as it models each words character sequence, the interaction between
words and also the conditional dependencies between output elements.

Broadly speaking, the model has two Bidirectional RNNs with LSTM
and a CRF layer. The first Bidirectional RNN reads each input word in a
forward and a backward fashion as it can be observed in table IV.5.

Each RNN that composes the BRNN is an encoder, which encode the
words character-by-character information in the FWD REPR andBWD REPR
variables, which later will be concatenated. So that to represent the whole

21Check the machine translation example at https://github.com/mila-udem/

blocks-examples/
22https://www.tensorflow.org/versions/master/tutorials/seq2seq/index.html

https://github.com/mila-udem/blocks-examples/
https://github.com/mila-udem/blocks-examples/
https://www.tensorflow.org/versions/master/tutorials/seq2seq/index.html
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s w e l l
s→w→ e→ l→ l = FWD CHR REPR

BWD CHR REPR = s←w← e← l← l

Table IV.5: Character modeling.

to swell the gourd and plump the ha zel shells
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

FWD to → swell → the → gourd → and → plump→ the → ha → zel → shells
BWD to ← swell ← the ← gourd ← and ← plump← the ← ha ← zel ← shells

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
O1 O2 O3 O4 O5 O6 O7 O8 O9 O10
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

CRF TAG1↔ TAG2↔ TAG3↔ TAG4↔ TAG5↔ TAG6 ↔ TAG7↔ TAG8↔ TAG9↔ TAG10

Table IV.6: My caption

word, the model includes the previously mentioned word embeddings and
it concatenates the input words embedding, together with the forward and
backward representations (FWD REPR and BWD REPR). These word
embeddings can be either pretrained (from an external corpus) or trained
jointly for the current task.

Once that the words whole representation is built, there is another Bidi-
rectional RNN that models the relationship among words. Whereas the pre-
vious Bidirectional RNN produced a single vector for each word (the output
vectors size is constant, independent of the words length in characters), in
this case, the BRNN produces an output for each word. This BRNN is sim-
ilar to the one in figure IV.12. The outputs of each RNN that make up the
BRNN (forward and backward) are concatenated.

Although the outputsO1, O2, . . . ON , produced by these presented BRNNs,
could be used directly, in this work these outputs go through a CRF layer,
so that to model the dependencies among output tags. Ling et al. [2015] was
a work in which the outputs were used without the CRF layer. They used
these vectors as feature vectors for an independent classifier.

IV.3 Unsupervised learning

Two different paradigms for learning patterns have been seen so far. The first
paradigm relies on manually written rules and the second on hand labeled
data. Both of them are expensive as they require costly resources; either
experts writing rules or human annotators.



86 NLP techniques for scansion

Unsupervised learning is the task of finding the hidden underlying struc-
ture of unlabeled data. The main advantage of these models, in contrast
with the supervised ones, is that there is no need of supervision or labeled
data, and thus, big amounts of data can be cheaply treated. This structural
information can be used in other processes. In recent years, Deep Learning
models almost completely rely on unsupervised learning for the generation of
word embeddings. In order to extract patterns from unlabeled data, some as-
sumptions must be made. For example, as previously mentioned, the main
assumption for learning word embeddings is the distributional hypothesis
[Harris, 1954], which states that the meaning of a word is known by the
company it keeps.

Currently unsupervised methods are also used to learn topic models.
Topic models [Griffiths and Steyvers, 2004, Blei, 2012] are statistical mod-
els that model the underlying semantic structures that emerge in a set of
documents. The assumption made by a topic model is that the words of
a document are generated according to a probability distribution over the
words and the main topic of each document is generated by another proba-
bility distribution over a number of possible topics. For instance, by selecting
a topic about astronomy, the model will be more likely to generate words
like spacecraft, sky, . . . than others such as, e.g. robbery, book, . . .

Almost all unsupervised learning can be understood as a clustering prob-
lem, where a set of input elements must be grouped in a number of clus-
ters and the elements from the same cluster are supposed to be similar.23

Typically used algorithms for unsupervised learning include K-Means and
Expectation-Maximization. In this work, as the main interest is finding
structure in sequential data, previously presented Hidden Markov Models
are used to perform unsupervised analysis in sequences.

IV.3.1 K-Means algorithm

K-Means is a centroid-based clustering algorithm that groups a set of input
instances into K clusters. This method is simple and effective. When it is
started, K points are chosen at random as initial centroids/means for the
clusters. Then, each instance is said to belong the nearest cluster.24 After
this assignment, the mean of each cluster is recalculated, as some instances
may have changed. This procedure is repeated until stability is reached. We

23This similarity function has to be specified. For example in word embeddings, similar
words are semantically similar.

24Several distance metrics could be used, such as, Euclidean distance, Manhattan dis-
tance, . . .
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reach stability when the same clusters are assigned to the same instances
continuously. The pseudocode of the algorithm can be seen in listing IV.4.

Listing IV.4: K-Means algorithm.

1 CLUSTERS [1..K] = Randomly initialize centroids of K

clusters

2 while not stable: // Iterate until the means are stable

3 for each instance:

4 //Set the nearest cluster to each instance

5 setCluster (nearest (1..K), instance)

6 for cluster in CLUSTERS:

7 // Recalculate the mean of the cluster

8 mean(cluster) = recalculateMean(instances(cluster))

Usages of the K-means algorithm in NLP.

IV.3.2 Expectation-Maximization

In the K-means algorithm, the clusters themselves are known beforehand
(they are initialized randomly) and their specific location is changed ac-
cording to the instances’ means. The Expectation-Maximization algorithm
—EM algorithm— [Dempster et al., 1977] works in a similar way as it also
performs several iterations until convergence is reached. An important differ-
ence [Witten et al., 2016] from the K-means algorithm is that the parameter
estimation is not made to the clusters themselves, but to the cluster prob-
abilities (mean and standard deviation). For each instance xi in the data,
there is a weight value wi that will express the probability of belonging to
each cluster. Let’s suppose that we have N data points and we need to divide
the data into K clusters. The mean and standard deviation of the clusters
would be calculated as:

Given : i ∈ (1..N); k ∈ (1..K)

wi,k = P (xi ∈ Cluster(k))

µk =
w1,kx1 + w2,kx2 + . . .+ wN,kxN

w1,k + w2,k + . . .+ wN,k

σ2
k =

w1,k(x1 − µk)2 + w2,k(x2 − µk)2 + . . .+ wN,k(xN − µk)2

w1,k + w2,k + . . .+ wN,k

(IV.27)

In the EM algorithm the iterations finish when the overall likelihood of
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the data is stable. This overall likelihood is calculated by multiplying the
sums of the probabilities of the instances to belong to each cluster:

N∏
i=1

K∑
k=1

Pr(Cluster(k))× Pr(xi|Cluster(k)) (IV.28)

This function reflects the overall likelihood of the data to the proposed
cluster probabilities. After performing several iterations, when the likelihood
differences are sufficiently small, the process is said to be finished. As com-
puting multiplications is computationally more expensive, log-likelihoods
are employed (so that sums are used instead of multiplications). The EM
algorithm is guaranteed to converge to a maximum, but this can be a local
optimum.

IV.3.3 Hidden Markov Models

In the supervised learning section of this chapter, Hidden Markov Mod-
els were presented as simple generative models for performing sequence-to-
sequence problems. The model itself is the same for supervised or unsuper-
vised learning. The difference lies in the way parameters are learned. Let’s
recall that a Hidden Markov Model is a statistical model that has three
elements:

1. Initial probabilities

2. Emission probabilities

3. Transition probabilities

In a supervised fashion, these parameters are learned using the maxi-
mum likelihood estimation (MLE). But as in unsupervised learning there
is no tagged data, they are learned using the Baum-Welch algorithm. The
Baum-Welch algorithm makes use of the previously mentioned EM algorithm
[Dempster et al., 1977] and the forward-backward algorithm [Rabiner, 1989]
and it is iterated until convergence is reached.

I have used two publicly available implementations of Hidden Markov
Models, the one included in the NLTK package25 and also treba26 [Hulden,
2012].

25https://github.com/nltk/nltk/
26http://treba.googlecode.com/

https://github.com/nltk/nltk/
http://treba.googlecode.com/
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IV.4 Discussion on methods

In this chapter several methods for tackling the problem of poetry scan-
sion have been explored. The first one, implemented in the software called
ZeuScansion, is a rule-based system and is only available for English. That
is the usual shortcoming of rule-based systems, that rules must be rewritten
for each language.

After that, I have reviewed a set of Machine-Learning based algorithms.
Among these, supervised and unsupervised approaches were shown. Some
of the supervised algorithms make independent predictions for each sylla-
ble (single/greedy prediction), and some others perform jointly and try to
find an optimal solution (structured prediction) making them more suitable
for sequence labeling problems. The disadvantage of supervised methods is
that feature extraction must be done manually and trying different feature
configurations can be costly. In this work, I will try the supervised methods
for English language. Once the best performing methods are discovered for
the English language, these will be extrapolated to other languages (Spanish
and Basque).

Finally, some current Neural Network models have been explored. The
main advantage of these frameworks is that, as it could be seen in this chap-
ter, there are architectures that learn representative feature spaces directly
from tagged data, so feature configurations do not need to be designed. The
same methodology will be applied to these models; I will apply the best
performing models to Spanish and Basque.

The ideal solution would be to use unsupervised approaches, as they do
not need to have any tagged data nor rules, but usually they do not perform
as well as supervised methods. Unsupervised models will be tested on En-
glish and Spanish data. Albeit there is interest on performing experiments
on Basque data, I will not try unsupervised learning on Basque poems, as
it is the first proposal of the annotated corpus.
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CHAPTER V

Experiments and results

Once that we have seen the main information about the classifiers and meth-
ods that are employed in this work (chapter IV), it is time to check their
performance on the corpora described in chapter III.

Let’s recall that there are corpora in three different languages; English,
Spanish and Basque. The corpus in English has been downloaded from an in-
teractive website for scanning English verse [Tucker, 2011]. The Spanish one
is from a corpus of the Spanish Golden Age [Navarro-Colorado et al., 2016]
and the one in Basque is a subpart of a poetic anthology [Urquizu Sarasua,
2009], manually tagged.

The main idea here is to perform an intensive experimental study in the
English corpus. The models that exhibit the best performance will then be
applied to Spanish and Basque.

V.1 Experimental setup and evaluation

In order to evaluate rule-based systems, such as ZeuScansion or Scandroid,
I tested them against the whole corpus, as they are expert systems and do
not need a training dataset.

On the other hand, in the case of the supervised systems, I use a 10-
fold cross-validation to train and test the models. In the Cross-Validation
configuration, each of the 10 folds is divided in two parts: development part
and testing part. I have used the development part to check the models
validity and finally, the best models are tested on the testing part. Although
creating a complete unseen testing dataset would be a more reliable solution
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I had to rely on this evaluation method as the tagged dataset is not large
enough.

When evaluating each of the annotated lines, the systems are evaluated
by checking the error-rate obtained by using Levenshtein distance comparing
each line from the automatically analyzed poem against each hand-made
scansion from the Gold Standard [Graves, 2012, p. 13]. This is done in
order not to penalize missing or superfluous syllables —which are sometimes
present —with more than 1 count. For example, this line of poem by Henry
W. Longfellow,

sent the wildgoose wawa northward

written in trochaic tetrameter, should be scanned as /x/x/x/x, while one of
the tools —ZeuScansion—marks the line in question as /x?/x/x, as it can
be seen in figure V.1.

Figure V.1: In this figure a verse by Henry W. Longfellow can be seen. The
second line shows how this line should be scanned and the third line an
analysis proposed by ZeuScansion.

With the Levenshtein metric the distance between the analysis proposed
by automatic tools, and the Gold Standard is calculated. Obviously, any
proposed analysis identical to the Gold Standard will be assigned a distance
of zero. The value that is obtained from using this distance metric can be
interpreted as a minimum number of errors in the analysis.

In the previous example, ZeuScansion fails to assign the correct stress
pattern to wildgoose, because the word does not appear in dictionaries and
no similarly spelled word can be found. The minimum Levenshtein distance
between the analysis and the reference is two, since changing the third ? to
a / and adding a x to the analysis would produce the ‘correct’ possibility in
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the gold standard. Then, as the gold input has eight syllables, the evaluation
system would return that the accuracy of the system is 0.75 (1.0− 2/8).

If more than one analysis are proposed in the Gold Standard, the distance
to both of them is checked from the automatically predicted stress sequence
and the minimum error is selected. For example in this excerpt from the
sonnet “Since there’s no help” by Michael Drayton [Palgrave, 1914]:

Be it not seen by either of our brows

one of the tools could scan it like

/x//xxxxxx

while in the gold standard the analysis of the line in question is

xx//x/x/x/ | /x//x/xxx/

The Levenshtein distance between these automatically and manually cre-
ated results would be four and two, respectively. The evaluation metric would
return that the proposed analysis has an error of 2 out of 10 syllables, which
is the minimum error to get an acceptable scansion.

With this in mind, two accuracy metrics are used when evaluating the
scansion models. The first one is the above presented per-syllable accuracy.
The second metric, also used in works such as Gervas [2000], Greene et al.
[2010], Navarro-Colorado [2017], checks the number of completely correct
lines —i.e. when the Levenshtein distance between the gold standard and
proposed analysis is zero.

V.2 Baselines

A baseline is a simple way to establish a lower bound for a statistical learning
systems performance. Algorithms that are used as baselines are usually the
most naive or trivial approaches to a problem, and in this case, I have defined
seven heuristics1, which are listed below:

• Always stressed: This approach will assign a stressed value to all in-
stances

1Their code is available under the GNU/GPL license at https://bitbucket.org/

manexagirrezabal/baselines4scansion

https://bitbucket.org/manexagirrezabal/baselines4scansion
https://bitbucket.org/manexagirrezabal/baselines4scansion
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• Always unstressed: This approach will assign an unstressed value to
all instances

• Lexical stress: In this approach stress is assigned to each syllable by
checking its lexical stress. The issue here is that a three-level marking
is used for lexical stress and the resulting stress should be in a two-
level marking. If the lexical stress is secondary, they will be tagged as
unstressed (the accuracy score was slightly higher). In the case that a
word has X syllables and the lexical stress has less syllables —this can
happen in the case of OOV words— the baseline adds a set of special
characters at the end. E.g. if the word different is assigned the lexical
stress “/x” and the syllable division states that the word has three
syllables (dif-fer-ent), the baseline would assign the stresses as “/xl”.

• Syllable weight: This approach will assign stress to heavy syllables
and other syllables will be unstressed. It uses a naive algorithm for
calculating the weight of the syllable2.

• iambic/trochaic (based on the last syllable): A sequence of constant
stressed/unstressed classes is assigned taking into account the last syl-
lables lexical stress. If the last syllables lexical stress is stressed, then
stress will be assigned as a sequence of continuously changing stress
(stressed-unstressed-stressed-unstressed...).

• iambic/trochaic (based on the first syllable): The same is done, as in
the previous case, but taking into account the first lexical stress to
start assigning.

• Naive Bayes: This approach estimates the probability of having a
stressed or unstressed class, given a syllable. This baseline expects
a syllabified sequence of words.

Each of these baselines is applied to the English dataset as a whole. But,
the Naive Bayes baseline is evaluated using a 10-Fold Cross-Validation, as
it needs to learn the conditional probabilities of each stress given a syllable.
In table V.1 you can see the output of each baseline given a poetic line.

In table V.2 the accuracies of these baselines can be seen. From these
baselines some conclusions can be drawn. As the corpus is mainly iambic,
just by assigning stress to the syllables following a constant iambic/trochaic

2If a syllable ends in consonant or it has a diphthong (simple list, without performing
g2p). Algorithm in appendix B.
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wo man much missed how you call to me call to me
Always stressed / / / / / / / / / / / /

Always unstressed x x x x x x x x x x x x

Lexical stress / x / x / / / x / / x /

Syllable weight / / / / x / / x x / x x

Iambic/trochaic (last) x / x / x / x / x / x /

Iambic/trochaic (first) / x / x / x / x / x / x

Naive Bayes / / x / / x / x x / x x

Gold Standard / x x / x x / x x / x x

Table V.1: Output of each baseline for an excerpt from “The voice” by
Thomas Hardy.

Baselines Per syllable (%) Per line (%)

Always stressed 50.88 0.27
Always unstressed 49.76 0.00
Lexical stress 73.57 5.76
Syllable weight 62.14 0.55
Iambic (Based on first) 75.89 11.25
Iambic (Based on last) 83.64 33.30
Naive Bayes 85.31 26.93

Table V.2: Accuracies of baselines in the English dataset.

pattern, a quite high accuracy can be reached. There is an important dif-
ference between accuracies when the assignment process is started from the
beginning of the line and the end of the line (5th and 6th rows). This benefit
is got especially because of the effect of rhyme in poetry. Rhymed lines in
poetry must follow the same rhythmic pattern, and thus, metrical variability
in the last syllables’ stress structure drops, compared to other syllables in a
line.

Also, another deduction that can be made here is that considering the
surrounding predictions of the current instance gives a higher accuracy, be-
cause, for example, the baseline that gives the highest accuracy is the one
that assigns constantly changing stresses.
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Program Per syllable (%) Per line (%)

ZeuScansion 86.17 29.37
Scandroid 87.42 34.49

Table V.3: Accuracies of rule-based systems

V.3 Rule-based scansion

As mentioned in the previous chapter, a rule-based system —ZeuScansion—
was developed to perform scansion. This tool was presented in Agirrezabal
et al. [2013c, 2016b] and released under the GNU GPL license on GitHub.3

In table V.3 the per syllable and per line accuracies of ZeuScansion can
be seen.4 The per syllable results are quite promising as it achieves a pretty
good result by just using simple rules and no sequence information at all.
Taking a look at the per line accuracies, it can be said that almost all lines
have a small number of errors, which leads to lower this accuracy while the
per syllable accuracy is sufficient. Getting sequence information such as the
previous syllables or predictions, for example, could help to reduce this error.
Although they could be better, I think that these results are promising as
neither sequential (surrounding stresses) nor metrical information (whether
the line is iambic, dactylic, . . . ) is used. The only pieces of information are
words, their lexical stresses and their POS-tags.

The global analysis system —which calculates a poems meter according
to the predominant feet— was also evaluated using two different works of po-
etry. The first one is Longfellow’s The song of Hiawatha and the second one
Shakespeare’s Sonnets to check if ZeuScansion was able to infer the meter
correctly. The meter of each sonnet in Shakespeare’s writing (154 sonnets)
was calculated; in the case of Longfellow’s poem each stanza (637 stanzas)
was analyzed separately. Shakespeare’s sonnets are written in iambic pen-
tameter and The song of Hiawatha in trochaic tetrameter. Table V.4 reports
the accuracy on this task.

3https://github.com/manexagirrezabal/zeuscansion
4These results are slightly different from Agirrezabal et al. [2013c, 2016b] in that the

Gold Standards version used for evaluation is newer. In Agirrezabal et al. [2013c, 2016b]
a corpus downloaded in 2013 from the 4B4V website was used.

544.58% were classified as amphibraic dimeter.

https://github.com/manexagirrezabal/zeuscansion
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Poem Correctly classified (%)

The song of Hiawatha 32.035

Shakespeare’s Sonnets 70.13

Table V.4: Evaluation of the global analysis system (only ZeuScansion)

V.4 Supervised learning

Let’s now turn into the supervised learning systems section. As it was pre-
sented in chapter IV, the employed models include greedy classifiers, struc-
tured predictors and Neural Networks.

V.4.1 Single/greedy prediction

Greedy classifiers, the ones that do not optimize the output predictions,
were used. The employed classifiers were:

1. Naive Bayes

2. Linear SVM

3. Perceptron

One experiment that only included basic (and possibly the language-
agnostic) features was performed, and subsequently another one, which in-
cluded all the features presented in the previous chapter (subsection IV.2.1).
Recalling the above, the basic feature configuration was composed of the first
ten feature templates that included:

• Syllable position in line

• Syllable position in word

• Number of syllables in the line

• Phonological weight of syllable

• Words length

• Words last character

• Words last two characters

• Words last three characters
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• Words last four characters

• Words last five characters

Training greedy sequence predictors with these attributes shows the basic
capability of these predictors using little or (almost) no linguistic informa-
tion. All these results are compared with the rule-based system ZeuScansion
[Agirrezabal et al., 2013c, 2016b]. Results with this feature configuration can
be seen in Table V.5 and it seems that quite acceptable accuracies can be
reached by simply extracting basic attributes from words.

Per syllable (%) Per line (%)

ZeuScansion 86.17 29.37

Naive Bayes 78.06 9.53
Linear SVM 83.50 22.31
Perceptron 85.04 28.79

Table V.5: Accuracies of different classifiers using just the basic features (10
features) previously presented using 10-fold Cross-Validation.

As also stated previously, additional feature templates are used together
with surrounding elements to model the current syllables context in a line of
verse. These elements are included among the additional feature templates:

• Current syllable (syllable[t]) and surrounding t± 10 syllables

• Current word (word[t]) and surrounding t± 5 words

• Current POS-tag (POS − tag[t]) and surrounding t± 5 POS-tags

• Current lexical stress (LS[t]) and surrounding t± 5 lexical stresses

The results of the classifiers using all the features are reported in Table
V.6. Here, both the SVM and the Perceptron see their scores improve sig-
nificantly. In the case of the Naive Bayes classifier results do not improve as
much as in the other cases, probably because of the sensitivity to overlapping
features in Naive Bayes. The difference between the linear SVM and the Per-
ceptron, especially in per-line accuracy, is somewhat noteworthy. Normally,
the SVM, which finds a maximum-margin classification boundary, would be
expected to outperform the averaged Perceptron, but that is not the case
here in both the basic feature set experiment and the full feature set one.
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Per syllable (%) Per line (%)

ZeuScansion 86.17 29.37

Naive Bayes 80.96 13.51
Linear SVM 87.42 34.45
Perceptron 89.12 40.86

Table V.6: Accuracies of different classifiers using all the features (64 fea-
tures) presented above using 10-fold Cross-Validation.

V.4.2 Structured prediction

As single predictors do not optimize the resulting sequence labeling, they
can make simple errors that propagate throughout the line—something that
could be avoided by looking at the surrounding outputs. This is the main
weakness of not using structured prediction systems. Two common struc-
tured prediction models were used:

1. Hidden Markov Models (HMM)

2. Conditional Random Fields (CRF)

In table V.7 the per line and per syllable accuracy of structured predic-
tion systems can be observed (HMM and linear-chain CRF) compared to
two rule-based systems. In the experiments, although the per-syllable accu-
racies do not vary too much, the per-line scores improve substantially by
the use of structured predictors. The HMM has been trained in the stan-
dard way, that is, using single syllables (emissions) and their corresponding
classes (states). The first CRF model is trained analogously, i.e. using only
syllables as the features, and the previous label.

In the same table, the results of the CRF models using the aforemen-
tioned feature configurations (basic feature templates and additional feature
templates) are reported. As expected, training the CRFs using the richer fea-
ture configurations employed in the greedy sequence predictors above yields
a much higher accuracy, especially in the per line measure.6

V.4.3 Neural Networks / Deep Learning

In the previous chapter, in subsection IV.2.4, a review about neural network
literature was done. Several models and architectures were presented and

6The results shown in this subsection and the previous one are published in Agirrezabal
et al. [2016a]
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Structured prediction models

#FTs Per syllable (%) Per line (%)

ZeuScansion - 86.17 29.37
Scandroid - 87.42 34.49

HMMjust syll - 90.39 48.51
CRFjust syll 1 88.01 43.85
CRFbasic 10 89.32 47.28
CRFadditional 64 90.94 51.22

Table V.7: Accuracies of structured prediction models using different sets
of features on 10-Fold Cross-Validation. The second column expresses the
number of feature templates used in the model.

from them, in this work I carried out experiments with the following systems:

1. Multilayer Perceptron [Witten et al., 2016]

2. Recurrent Neural Network Language Models

3. Encoder-Decoder architecture

4. Bidirectional Recurrent Neural Networks + CRF

Although Feedforward networks (Multilayer Perceptron) perform well
in some cases, their performance is usually similar to classifiers like SVM
or Perceptron, as they are not structured predictors. The obtained results
using these models were lower than previous greedy predictors, so they were
left aside. Also, the memory requirement of a Multilayer Perceptron is very
high.

Some initial experiments were performed using Recurrent Neural Net-
work Language Models (RNNLM), just by inserting a tag after each word
(plus a special character). This tag was the stress that the word would have.
A language model was trained in that way and it tried to predict the un-
seen tags. Resulting accuracies were below 80%, which in some cases was
because the first prediction was not done correctly, namely because of error-
propagation. Then, this model was not promising for the task.

Encoder-Decoder

As an Encoder-Decoder architecture gave high quality results in several
tasks, such as Machine Translation [Sutskever et al., 2014, Bahdanau et al.,
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Per Syllable (%) Per Line (%)

S2S 84.52 30.93
W2S 85.44 34.00

Table V.8: Best results of the Encoder-Decoder model in the English dataset
(development set).

2014] or morphological reinflection [Kann and Schütze, 2016], experiments
were performed with such architecture.

The problem was modeled as a character sequence to stress sequence
problem. As explained earlier in chapter IV, in the Encoder-Decoder archi-
tecture the input sequence is compressed to a fixed-size vector and then,
the decoder is the responsible of producing the output. Because of that, as
there is no restriction about the number of input and output elements, two
specific experiments were accomplished.

The first experiment was just to learn a mapping from a space-separated
syllable sequence to a stress sequence (S2S),7 e.g.:

the in vis i ble worm → xx/xx/

But as word structure is important, the second experiment was to learn
from a syllabified word sequence to a stress sequence (W2S),8 for instance:

the in.vis.i.ble worm → xx/xx/

In these experiments there was no improvement over the results of previ-
ous models. Despite testing the model with different hidden layer sizes and
embedding sizes, results were not sufficient. In table V.8 the best obtained
results can be seen. These optimal results were got using 20 hidden units
in both the encoder and the decoder. In the case of the character and the
output tag embedding size, they were set to 40.

Bidirectional LSTM + CRF

As reviewed in the subsection IV.2.4 from previous chapter, the model pre-
sented in Lample et al. [2016] models the character sequences in each word
and models those word representations throughout a sentence. Furthermore,
semantic representations can be included in the form of word embeddings,

7Syllable-to-stress
8Word-to-stress
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to check whether semantic/syntactic information extracted from corpora
(without supervision) is helpful in the metrical analysis of poetry. Because
of that, the problem was represented using two different methods (as in
subsection II.3.3):

1. Find a mapping from words to stress patterns (W2SP)

2. Find a mapping from syllables to stresses (S2S)

The first way tried to find a mapping from words to stress patterns
(W2SP). The second method represented verse lines divided by syllables
and for each syllable a binary task should be performed, marking each syl-
lable as stressed or unstressed, syllable to stress (S2S). In both cases, a
Bidirectional LSTM reads the character sequence from each syllable or word
and together with its own embedding, a joint representation is built. Then,
there is a word-level Bidirectional LSTM that reads each word or syllable,
and produces an output.9 The main reason for performing the first experi-
ment is that pretrained word embeddings can be incorporated.

Verse Stress sequence
Therefore my verse to constancy confined, [+-] [-] [+] [-] [+-+] [-+]

There fore my verse to cons tan cy con fined, [+] [-] [-] [+] [-] [+] [-] [+] [-] [+]

The results of these two methods can be seen in table V.9. By looking
at the results, it was quite evident that giving the verse lines syllabified
assisted the model to extract the phonological structures of each syllable
and thus, results were better. From these initial results two different paths
were explored:

1. Incorporate word embeddings (in the W2SP model)

2. Add the Word Boundary to the syllables (in the S2S model)

Per Syllable (%) Per Line (%)

W2SP 90.80 53.29
S2S 93.06 61.95

Table V.9: Initial results using the Bi-LSTM-CRF.

9If the problem is modeled as a S2S problem, the output dictionaries size will be 2
(stressed or unstressed).
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Per Syllable (%) Per Line (%)

W2SP-NoPretr 90.80 53.29
W2SP-PretrLiter-W=2 91.46 52.49
W2SP-PretrLiter-W=5 90.54 49.91
W2SP-PretrWiki-W=2 91.06 51.48
W2SP-PretrWiki-W=5 91.42 53.57

Table V.10: Results of the Bi-LSTM-CRF including pretrained word em-
beddings.

In order to incorporate pre-trained vector representations of words (word
embeddings), these were calculated from a larger corpus. Two corpora were
used, English Wikipedia (PretrWiki) and some literary works (PretrLiter)
downloaded from Project Gutenberg.10 The embeddings were trained using
300 dimensions for the word vectors and leaving all the other parameters as
default.

As including syntactic information is useful in order to calculate the
stress values word embeddings were expected to assist in this. Then, two
different window sizes were used to train the word representations, W=5
and W=2.11 The results of these experiments can be seen in table V.10 and
as can be seen, results are not conclusive.

As stated before, the second mentioned path was to add word boundary
information. Sometimes, having all the words divided into syllables, makes
it difficult to calculate the possible stress sequence, as the sequence of words
becomes obscure, or hard to infer. Let us consider two verses from Shake-
speare’s Sonnets, No. 6 and 60, respectively:

Verse Syllabified verse
that’s for thyself to breed another thee that’s for thy self to breed a no ther thee
in sequent toil all forwards do contend in se quent toil all for wards do con tend

In the second example, the syllable “for” is known to carry stress because
is part of the word “forwards”. However, if it is an independent word, it could
be both stressed or unstressed. Because of this, a word boundary marker
(Word Bound) was included in each syllable if it was the last syllable of
the current word. This improved the results, as can be seen in table V.11.

10The downloaded literary works were from the same authors included in the 4B4V
corpus.

11Smaller window sizes are supposed to model syntactic information of a word. Bigger
window sizes capture broad topical content about a target word [Goldberg, 2015].
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Per Syllable (%) Per Line (%)

S2S 93.06 61.95
S2S + Word Bound 94.49 69.97

Table V.11: Results of the Bi-LSTM-CRF including word boundaries.

#FTs Per Syllable (%) Per Line (%)

ZeuScansion* - 86.17 29.37
Scandroid* [Hartman, 2005] - 87.42 34.49

Iambic (Based on last)* - 83.64 33.30
Naive Bayes* - 85.31 26.93

Perceptron10 (S2S) 10 85.04 28.79
Perceptron64 (S2S) 64 89.12 40.86
HMM (S2S) - 90.39 48.51
CRF10 (S2S) 10 89.32 47.28
CRF64 (S2S) 64 90.94 51.22

Bi-LSTM+CRF (W2SP) - 89.39 44.29
Bi-LSTM+CRF (S2S) - 91.26 55.28
Bi-LSTM+CRF+WB (S2S) - 92.96 61.39

Table V.12: Results of the best classifiers in the English dataset (testing set)
compared to rule-based approaches and baselines.

After doing all the above experiments in the development data, results
of the most promising models on the testing data are shown, so that to see
the validity of the parameters previously analyzed and chosen. In table V.12
all these results can be seen.

To conclude with experiments in English language a last model was
trained. Previous methods using syllabic information had a limitation in
their model, latent also in some of the feature-based predictors. Syllabi-
fication was assumed to be done beforehand. As we were aware of such
limitation which was not present in ZeuScansion, a last system was created.
This system performed several subtasks to scan poetic lines completely au-
tomatically from raw texts. The aim of this experiment was to show that the
Bidirectional LSTM model could be also used with automatically syllabified
poetry. In the following lines the steps that this model performs can be seen:

1. Grapheme2Phoneme conversion using the software package Phoneti-
saurus [Novak et al., 2012] trained on the NETTalk pronunciation
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Per Syllable (%) Per Line (%)

ZeuScansion 86.17 29.37

W2SP 90.80 53.29
W2Phon2Syll2Str 94.79 71.04

Table V.13: Results of the model that performs grapheme-to-phoneme, syl-
labification and Neural Network based scansion in the English dataset (de-
velopment set), compared to previous models.

dictionary [Sejnowski and Rosenberg, 1987].

2. Syllabification and word boundary marking [Hulden, 2006] using the
software Foma [Hulden, 2009].

3. Bidirectional LSTM + CRF based scansion (syllable-to-stress, S2S)
[Lample et al., 2016].

The results of this model in the development data compared to previous
W2SP models are shown in table V.13. Even though there is a previous
preprocessing part, results are still sufficiently good. In fact, the best results
in the development data were got in this case.

In order to see that the BiLSTM+CRF model learns phonological pat-
terns from poetic data, in figure V.2 the output of the Bidirectional LSTMs
can be seen, showing the first line of the poem “Scrambled Eggs Super!”, by
Dr. Seuss. The columns that represent the stressed syllables (2nd, 5th, 8th
and 11th syllables) stand out clearly. This representation is used as input
for the CRF layer, which finds the optimal resulting sequence.

V.5 Extrapolating to Spanish

After doing all the experiments in English, the previous data-driven tech-
niques were applied in the Spanish dataset, so as to see the applicability of
the best models and their features. Firstly, the accuracies of some baselines
were calculated, specifically, the best four baselines. Table V.14 shows these
results.

Results of this table illustrate the high bias toward the lexical stress,
which can be because it is used in the heuristic to equal the number of
syllables and stresses (see section III.3 and appendix A). Probably because
of that, a high accuracy is reached with the lexical stress baseline.
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Figure V.2: Output of the Bidirectional LSTM (8 different outputs) trained
on English poetry. These values are the input of a CRF layer. The input
sentence is “I don’t like to brag and I don’t like to boast”.

Baselines Per syllable (%) Per line (%)

Lexical stress 94.11 50.00
Iambic (Based on first) 73.78 0.79
Iambic (Based on last) 75.22 0.84
Naive Bayes 82.20 6.37

Table V.14: Accuracies of baselines in the Spanish corpus.

When using the Naive Bayes baseline, the prior probability of having
a stressed syllable was checked, and that was different from the English
corpus. The prior probability of a syllable to be unstressed was 30 points
higher than being a stressed one. Almost 66% of the syllables in the Spanish
corpus are unstressed.

When performing experiments with the supervised classifiers, some mod-
els were left aside because of their low results, such as, Naive Bayes and
Support Vector Machines with 10 and 64 features.

Results in table V.15 show that previous work [Gervas, 2000, Navarro-
Colorado, 2017] is hard to beat and also that neural methods outperform
feature-based classifiers and structured predictors (similar as in English).

It can be observed in table V.15 that the 10 basic and hypothetical
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#Features Per Syllable (%) Per Line (%)

Navarro-Colorado [2017] - - 94.87
Gervas [2000]* - - 88.73

Lexical stress - 94.11 50.00
Naive Bayes - 82.20 6.37

Perceptron 10 74.39 0.44
Perceptron 64 91.49 35.71
HMM 1 92.32 45.08
CRF 10 84.89 18.61
CRF 64 92.877 55.44

Bi-LSTM+CRF (W2SP) - 98.95 90.84
Bi-LSTM+CRF (S2S) - 95.13 63.68
Bi-LSTM+CRF+WB (S2S) - 98.74 88.82

Table V.15: Results of the best classifiers in the Spanish dataset (testing
set) compared to rule-based approaches and baselines.

language agnostic features do not work very well when used with a greedy
model, such as the Perceptron. But, if they are used in a CRF model, as they
use the output sequence information too, it seems that results get improved
slightly, but not enough.

The inclusion of additional features, especially the current word infor-
mation gives a good cue to calculate the stress of the current syllable. In
order to see that word information is crucial in Spanish scansion, please refer
to Bi-LSTM + CRF results, one of them including word boundaries +WB
and the other not including them. The per-syllable accuracy has an increase
of approximately 3 points and the per-line accuracy goes from 63.68 until
88.82.

To conclude with the extrapolation of experiments, the encoder-decoder
model was used in the Spanish dataset. The main motivation for using such
model was its flexibility in the input sequence and output sequence lengths
(Both sequences length does not need to be the same). Hence, the encoder-
decoder would learn when to perform synaloephas without making use of
any heuristic. A per-syllable and per-line accuracy of 89.89% and 47.32%
was reached, respectively.
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Baselines Per syllable (%) Per line (%)

Lexical stress 25.00 0.15
Iambic (Based on first) 81.15 29.74
Iambic (Based on last) 75.86 12.88
Naive Bayes 66.15 0.64

Table V.16: Accuracies of baselines in the Basque corpus

V.6 Extrapolating to Basque

As you recall from chapter III, the Basque corpus was composed of two sub-
corpora; one with annotated poems according to a sung version, and the
other according to how poems are recited.

Preliminary experiments were conducted using the whole corpus and
after that with each subpart. Experiments with the whole corpus showed a
high variability between folds, and thus, reliable conclusions could not be
made. The same happened with the chanted sub-corpus. Then, because of
the stability of results, the recited portion of the whole annotated corpus
(38 poems) has been used.

The accuracies of the same baselines as in Spanish were calculated and
these results are reported in table V.16. The iambic baseline gives the best
results, based on the first lexical stress. It is noteworthy to check the low
result that the lexical stress baseline shows.

This could be understood because in standard Basque stress is assigned
to the [+2,-1] syllables12 according to Hualde [1994]. But when stress is
assigned to a sentence or whole utterance this [+2,-1] is extended to the
sentence or prosodic group, so, for instance, in the word “txistularia” promi-
nences should be assigned as “txis-tú-la-ri-à”,13 but the sentence “txistularia
da” should be realized as “txis-tú-la-ri-a dà” (from [Hualde, 1994, p. 1559]).

Following the steps of the Spanish extrapolation, the same experiments
were replicated in the Basque poetry dataset. Results are reported in table
V.17. These results are more homogeneous than previous results in other
languages. There is a notable improvement with the usage of structured
prediction methods, as it can be appreciated in the results. But all the
other results show a slight variation, which are not significant according

12Primary stress is assigned to the second (+2) syllable and secondary stress is assigned
to the last syllable (-1).

13In this case, stresses are marked with diacritic symbols. Primary stress with acute
accent (á) and secondary stress with grave accent (à).
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#Features Per Syllable (%) Per Line (%)

Iambic (Based on first) - 81.15 29.74
Iambic (Based on last) - 75.86 12.88

Perceptron 10 71.77 9.74
Perceptron 64 69.86 8.47
HMM 1 80.97 24.10
CRF 10 81.19 26.23
CRF 64 80.52 26.93

Bi-LSTM+CRF (W2SP) - 83.19 23.75
Bi-LSTM+CRF (S2S) - 79.38 20.32
Bi-LSTM+CRF+WB (S2S) - 79.66 24.67

Table V.17: Results of the best classifiers in the Basque dataset (recited)
compared to baselines.

to a Welch’s t-test. This low significance is distinguishable because of the
high variance that the cross-validation results manifest. In the table, it is
remarkable that the per line accuracy of the iambic baseline was not beat.

V.7 Unsupervised learning

Toward the completely unsupervised analysis of poetry, a simple cross-
lingual experiment was tried. Using the Bidirectional LSTM framework,
a model was trained on Spanish data and was tested against the English
corpus. The same was done in the opposite direction. The intuition for this
attempt was that some typical structures among characters would be shared
across languages and the Deep Learning model would be able to learn them.
The per-syllable results were between 68.95% and 71.65% for each language
pair. The per-line accuracies were too low (below 1.7%).

Apart from this, typical clustering algorithms presented before— K-
Means and EM— were tested in the English dataset. We took the dataset
with 64 feature templates, applied the usual filters in order to convert strings
to numeric values and evaluated both algorithms. The per-syllable accura-
cies were below 55%.

Finally, Hidden Markov Models were used for unsupervised scansion.
In order to check the models learning capacity, first order models with two
different states (unstressed/stressed) were trained. The obtained output was
not representative and thus results were too low. The intuition was that using
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higher order models would help,14 and to that end models with more states
(4, 8 and 16) were trained, simulating higher order models. As unsupervised
learning models results can vary among experiments, each experiment was
repeated 100 times for each number of states. Also, it is worth to mention
that each model, getting a syllabified poem line as input, returns a numeric
sequence. The numbers from that sequence range from 0 to N − 1, being N
the order of the HMM.

In tables V.18 and V.19, the average accuracy of each model is reported
for each language compared with the best baselines, rule-based models and
the best previously mentioned guesser. Results clearly show that accuracies
get improved when higher order models are used (until 16 states). Sometimes
this improvement is important and in other cases slight. But the most inter-
esting fact is that the standard deviation —i.e. variability— of the results
is reduced with higher ordered models.

Per syllable (%) Per line (%)

Iambic (Based on last) 83.64 33.30
Naive Bayes 85.31 26.93

ZeuScansion 86.17 29.37
Bi-LSTM+CRF+WB (S2S) 92.96 61.39

HMM (4 states) 66.28 7.29
HMM (8 states) 74.65 9.91
HMM (16 states) 76.51 12.53
HMM (32 states) 74.03 8.07

Table V.18: Accuracy of unsupervised Hidden Markov Models in the English
dataset, compared to previous models.

14It is evident that to model dactylic (/xx) or anapestic (xx/) poems at least two
previous stresses have to be checked.
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Per syllable (%) Per line (%)

Lexical stress 94.11 50.00
Naive Bayes 82.20 6.37

Navarro-Colorado [2017] − 94.87
Gervas [2000] − 88.73
Bi-LSTM+CRF (W2SP) 98.95 90.84

HMM (4 states) 68.60 0.13
HMM (8 states) 76.40 2.93
HMM (16 states) 76.77 3.05
HMM (32 states) 75.62 2.34

Table V.19: Accuracy of unsupervised Hidden Markov Models in the Spanish
dataset, compared to previous models.
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CHAPTER VI

Discussion and Future Directions

In this work several methods for automatic poetic scansion have been pre-
sented. These models can be rule-based or data-driven. The main advantage
of data-driven systems is their high applicability to other languages, if tagged
data are available. In this work, the main investigation has been carried out
in English, and then, the best resulting models have been applied to Spanish
and Basque.

As a rule-based system, ZeuScansion, a tool for scansion of English po-
etry [Agirrezabal et al., 2016b], was presented. Subsequently, experiments
have been carried out in English by using supervised methods. Among these
supervised methods, three types of learners have been considered: indepen-
dent predictors, structured predictors and Deep Learning models.

After training and testing models for poetic scansion in English, models
for Spanish and Basque have been generated. Together with these language-
specific methods, unsupervised learners were tested, which learn patterns
from untagged (raw) data, only in English and Spanish data.

This section includes a review of results and corresponding conclusions.
Also included, is a discussion on research questions posed in the introduction
of this thesis. The section closes with a summary of the contributions of this
work and suggestions for further research.

VI.1 Conclusions

The experimentation carried out in this work gives an insight into poetic
traditions and some conclusions can be made. Such conclusions are presented
below.



114 Discussion and Future Directions

The baselines reveal some characteristics of the studied languages’ poetic
traditions. Some poetic traditions rely strongly on the lexical stress (Span-
ish poetry); this is evidently observed in the high accuracy of the lexical
stress baseline. On the other hand, in English poetry, certain syllables are
always stressed or unstressed, unlike in Spanish. Evidence for this is the high
prediction accuracy of the Naive Bayes baseline.

Later, the first presented method for automatic scansion is ZeuScan-
sion [Agirrezabal et al., 2013c, 2016b]. ZeuScansion correctly predicts the
stresses in the 86.17% of the syllables and predicts correctly 29.37% entire
lines. Considering that contextual elements are not used for prediction, and
that a stress pattern is therefore produced for each word independently, re-
sults are promising. This result, however, is lower than the other rule-based
system presented in Hartman [2005], Scandroid, which achieves an 87.42%
per-syllable accuracy and a 34.49% per-line accuracy.

Moving toward data-driven methods, after performing a diverse num-
ber of experiments, previous rule-based methods have been improved upon.
The inclusion of structural information, i.e. the use of structured prediction
models, significantly improves preceding results.

Supervised learning models have resulted in high accuracy, reaching a
minimum of 80% of accuracy for all languages. In the English data, per-
syllable results are similar to those reported in Estes and Hench [2016] (F1-
Score of 0.904 on held-out testing data) for the supervised analysis of Middle
High German poetry.

Among data-driven systems, it is worth mentioning the high results that
the Bidirectional LSTM yield, without making use of any hand-crafted fea-
tures. The Neural Network learns useful patterns directly from data, by
learning information from character sequences along with word and phrase
information, which suggests that they model the phonological structure of
words within a context.

Spanish results are not so competitive. In Gervas [2000], a per-line ac-
curacy of 88% was achieved. However, recently published results [Navarro-
Colorado, 2017] show a per-line accuracy of 94.87%, while the best per-line
accuracy achieved in this work is 90.84% for Spanish. One of the shortcom-
ings of the best scansion model presented here (Bi-LSTM+CRF) is that it
requires one output for each input, which makes it challenging to create
systems in languages where synaloephas are used, such as in Spanish.

Results obtained in the Basque dataset should be considered preliminary.
Because of the high variability, reflected in a rather high standard deviation,
not too many conclusions can be made. The use of structured prediction
methods gives the best per-syllable results in Basque data. It is noteworthy
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English Spanish Basque

Perceptron10 85.04 74.39 71.77
Perceptron64 89.12 91.49 69.86
HMM 90.39 92.32 80.97
CRF10 89.32 84.89 81.19
CRF64 90.94 92.87 80.52
Bi-LSTM+CRF (W2SP) 89.39 98.95 83.19
Bi-LSTM+CRF (S2S) 91.26 95.13 79.38
Bi-LSTM+CRF+WB (S2S) 92.96 98.74 79.66

Table VI.1: Per syllable accuracies of the best data-driven models for the
three investigated languages (testing data). The Perceptron is included as a
single predictor (the first two rows), Hidden Markov Models and Conditional
Random Fields as structured predictors (rows 3-5) and the Neural Network
model (last three rows). These methods have been presented in chapter IV
and the performed experiments in chapter V.

how the iambic baseline has not been surpassed in the per line results.

The goal of this extrapolation was to check the applicability of common
NLP models, trained on poetic data. According to reported results, if tagged
data is available, results are promising.

To conclude, empirical results on unsupervised analysis of poetic stress
patterns show that the dependencies between outputs help finding structure
in raw text. In fact, employing Hidden Markov Models, when the model
uses 16 hidden states, results are acceptable. Using smaller models leads to
a higher variation among results and larger models fall into a lower accuracy.

Unsupervised models also draw a rough, general structure of the language
in question. For example, in English poetry, the distance between stressed
syllables is not high.1 In Spanish poetry, these distances are higher than in
English. This is reflected in the unsupervised HMM results. English poems
see their result significantly improved when higher order models are used,
while improvements in Spanish data are lower, probably because of long
dependencies.

1The use of structures such as / x x x x / is not common in English poetic tradition.
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English Spanish Basque

Perceptron10 28.79 0.44 9.74
Perceptron64 40.86 35.71 8.47
HMM 48.51 45.08 24.10
CRF10 57.28 18.61 26.23
CRF64 51.22 55.44 26.93
Bi-LSTM+CRF (W2SP) 44.29 90.84 23.75
Bi-LSTM+CRF (S2S) 55.28 63.68 20.32
Bi-LSTM+CRF+WB 61.39 88.82 24.67

Table VI.2: Per line accuracies of the best models for the three analyzed
languages (testing data).

VI.2 Research questions

At the beginning of this dissertation a set of three research questions were
proposed. These questions are addressed below.

Question 1: Which are the informative features when analyzing a poem?

The rule-based scansion system, ZeuScansion, shows that simply by using
the word’s lexical stress and its POS-tag produces positive results. Further,
various issues have been checked so as to highlight the importance of the
proposed features in this task, and also to extract such information.

• Assess the value of additional features

• Usage of output dependencies

• Bi-LSTMs as feature extractors

In the case of the feature-based predictors, adding additional features
that included lexical stresses, POS-tags, syllables and so on, improves sig-
nificantly the per-syllable accuracies of all feature-based predictors in the
English and Spanish data.

If the results obtained by the Averaged Perceptron using 64 features,
with its positive results, and the CRFs with 64 features are compared, CRFs
show better performance. The improvement is significant and from this, we
can infer that the information from output dependencies is crucial when
performing scansion, both in English and Spanish.
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In the experiments using Deep Learning, we included just syllables or
words, with the expectation that the complex model would learn the inher-
ent patterns among characters and syllables or words. Deep Learning ex-
periments gave us better results than previous feature-based models, which
means that the most informative feature representation can be extracted by
character-level neural models.

Question 2: Does language-specific linguistic knowledge contribute when
analyzing poetry?

As mentioned in the previous question, adding additional features that in-
clude linguistic information, such as POS-tags and lexical stresses, clearly
boosts the accuracies of the classifiers.

In English and Spanish poetry, the DL-based syllable-to-stress mod-
els are outperformed by the models that use word boundary information
(S2S+WB or W2SP). This shows that the word structure information is
helpful for the task of scansion.

Supposing that typical structures among characters would be repeated
across languages, a cross-lingual experiment was carried out, as mentioned in
section V.7. The low results of this experiment show that character sequences
are not shared among poetic traditions, and thus, language-specific linguistic
knowledge helps when analyzing poetry.

Question 3: Is it possible to analyze a poem without having information
about language? Can we learn to do it?

Currently, it is possible to reach a per syllable accuracy of around 75%
in English and Spanish poetry. Taking into account that this is calculated
directly from syllabified text and without resorting to tagged information,
results are hopeful. As it may be seen in section VI.4, I expect that including
dependencies among lines will be informative for this task.

Beyond current results, the output of unsupervised models seems to be
informative as a feature for the task of supervised scansion. As mentioned
in chapter III, there are not very many annotated poetry corpora avail-
able. Then, semi-supervised approaches could be developed by using these
unsupervised models. Unsupervised models could be trained on large unan-
notated poetic corpora.
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VI.3 Contributions

The main contribution of this thesis is the analysis and development of auto-
matic scansion systems with a multilingual perspective. A rule-based system,
ZeuScansion, together with numerous data-driven methods were presented.

ZeuScansion scans poems only in English, while the other data-driven
methods can analyze poems in more languages, if tagged data are available.

Among data-driven techniques, Neural Network models have shown the
best performance. The application of empirical methods showed us which
are some of the important aspects when analyzing the meter of poems in
different traditions.

Finally, the training and testing of the models have been carried out with
three different tagged corpora, in English, Spanish and Basque. The first two
were available [Tucker, 2011, Navarro-Colorado, 2015] and the third one was
created within this study. This repository includes Basque poems ranging
from the 16th century until the 20th century. More information about these
corpora can be found in Chapter III.

All the software and resources created in this study have been released
under the GNU GPL license, and they are available for download in the fol-
lowing repositories: ZeuScansion,2 AthenaRhythm,3 the Basque poetry cor-
pus,4 the modified version of the Spanish corpus,5 and the baselines6 used
for each language.

VI.4 Future work

There are several trends for future that can be derived from the current work.
These improvements are proposed for ZeuScansion, feature representations,
Neural Network models, corpora and so on.

ZeuScansion calculates the overall meter of the poem, for which the aver-
age stress value is calculated. This calculation assumes that all lines contain
the same number of syllables, which can be a limitation. Tackling this would
allow working with poems that contain different numbers of syllables, such
as Phantasmagoria and Other Poems.

Regarding features, something to consider is the set of basic features. The

2https://github.com/manexagirrezabal/zeuscansion
3https://github.com/manexagirrezabal/athenarhythm
4https://bitbucket.org/manexagirrezabal/basquepoetrycorpus
5https://bitbucket.org/manexagirrezabal/corpussonetossiglosdeoro
6https://bitbucket.org/manexagirrezabal/baselines4scansion

https://github.com/manexagirrezabal/zeuscansion
https://github.com/manexagirrezabal/athenarhythm
https://bitbucket.org/manexagirrezabal/basquepoetrycorpus
https://bitbucket.org/manexagirrezabal/corpussonetossiglosdeoro
https://bitbucket.org/manexagirrezabal/baselines4scansion
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applicability of these basic features to other languages should be checked and
their language-agnostic nature could be improved.

Currently, all poetic lines are assumed to be independent from each other
in all the presented models. This can greatly reduce the accuracy of a scan-
sion system. In order to solve this problem, the inclusion of the global stress
information is crucial. Sometimes, when ambiguity cases arise, information
of other lines can help disambiguating them. Consider these lines from “Par-
adise Lost”, by John Milton:

No more of talk where God or Angel Guest
. . .

From Eden over Pontus, and the Poole
. . .

Of Mans First Disobedience, and the Fruit
. . .

That to the highth of this great Argument

The first two lines’ analysis can be done easily, while the third and fourth
lines exhibit more complexity. The global rhythmic pattern can help resolv-
ing such challenging cases. This information can be very useful, especially
in the task of unsupervised scansion.

Another interesting element to further explore is rhyme. In the English
baselines, there was a high difference between the accuracies of the two
iambic baselines. The one that assigned stresses based on the last stress
obtained a higher accuracy. The stress pattern of rhyming words must be
the same, then, rhyming parts of poems could be helpful toward a more
accurate poetic scansion.

Let us move towards the issue of the methods. Nowadays, the best re-
sults for poetic analysis have been obtained using Bidirectional LSTMs that
model the syllables’ character sequence, among more things. The use of
bidirectional models is motivated by the fact that LSTMs remember the
last visited elements, which means that the forward LSTM remembers the
suffixes better and the backward one the prefixes. It is suggested that instead
of using a bidirectional LSTM for characters, a tridirectional LSTM could
be used. In this way, apart from remembering the beginning and the end of
the word/syllable, it also would remember the nucleus of it. So that to do
it, the LSTM would go toward the center of the word, as in this example,
where the syllable “trans” is modeled:

Forward LSTM: t→ r → a→ n→ s
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Backward LSTM : t← r ← a← n← s
Nucleus LSTM: t→ r → a← n← s

It has been shown that currently the most informative feature repre-
sentation can be extracted by character-level neural models. This proposes
future directions in order to understand what the character level models
are actually learning in the poems, as numeric representations are not as
understandable as common features (word length, syllable weight and so
on).

Recently, new promising Deep Learning models have appeared, and we
expect that they will be useful for the current task. These new models include
Kalchbrenner et al. [2016] for supervised poetry scansion or Tran et al. [2016]
for unsupervised analysis.

Because of the considerable amount of untagged or raw poetry, unsu-
pervised models should be further explored. In the unsupervised models
trained in this study, lines are supposed to be independent, assumption that
probably affects the results.

Unsupervised Hidden Markov Models should be included in supervised
approaches. Using their output as a feature, semi-supervised models could
be developed. To this end, the works Daumé III et al. [2010] and Teichert
and Daumé III [2009] seem to be promising.

Currently, a two-level representation has been used to evaluate the scan-
sion models, and data-driven models have been trained directly to classify
each syllable as stressed or unstressed. This problem can be treated as a
multi-class or regression problem, for which the dataset presented in Hayes
et al. [2012] would be very useful.

The validity of this work could be demonstrated by getting acoustic
information of poems publicly read, using recited poetry corpora. The audios
of the poems can be analyzed with software that is currently used for acoustic
analysis, such as Praat [Boersma et al., 2002].

As the previous goal of this thesis was to automatically generate poetry,
I believe that the application of the contributions made in this dissertation
will improve previous approaches to poetry generation [Agirrezabal, 2012,
Agirrezabal et al., 2013b, Astigarraga et al., 2014].
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Aldekoa, I. (1993). Antoloǵıa de la poeśıa vasca = Euskal poesiaren antologia.
Visor, Madrid.
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Plecháč, P. and Kolár, R. (2015). The corpus of czech verse. Studia Metrica
et Poetica, 2(1):107–118.

Ponomareva, N., Rosso, P., Pla, F., and Molina, A. (2007). Conditional
random fields vs. hidden markov models in a biomedical named entity
recognition task. In Proc. of Int. Conf. Recent Advances in Natural Lan-
guage Processing, RANLP, pages 479–483.

Preminger, A., Warnke, F. J., and Hardison Jr, O. B. (2015). Princeton
encyclopedia of poetry and poetics. Princeton University Press.

Quilis, A. (1967). La percepción de los versos ox́ıtonos, parox́ıtonos y
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APPENDIX A

Heuristic for Spanish poetry

In this document we show a heuristic for the transformation of a corpus of
Spanish poetry in order to be analyzed using some tools that we developed
for English.

Motivation

The interest on this heuristic comes from the impossibility of applying some
algorithms developed for the rhythmic analysis of English poetry because
of the use of synaloepha in Spanish poetry. This does not mean that this
kind of devices are not used in English, as syllable addition is quite typical
too. The issue is that in the corpus that we are using for our experiments in
English, all syllables are marked with a level of stress, and because of that we
decided to mark all the syllables (marking the syllables around synaloephas
as unstressed).

Corpus

The corpus we are using for this work ? has been created and is mantained
by Borja Navarro Colorado and it is available on GitHub.1 This corpus is
a collection of sonnets from the Spanish Golden Age and it is composed of
82593 verses, and they include metrical information about each line, calcu-
lated automatically using a scansion system. From all the verses, 1921 have
been manually checked at this moment (09/06/2016), which will be the ones

1https://github.com/bncolorado/CorpusSonetosSigloDeOro

https://github.com/bncolorado/CorpusSonetosSigloDeOro
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that we are interested. We are aplying the heuristic to the manually checked
part.

The task

For each line we have to return a stress sequence that will be the allegedly
produced sequence when the poem is read aloud. The inputs that we have
in this problem are a line of poem, such as,

que o no podréis de lástima escucharme,

along with a sequence of stress values.

- + - + - + - - - + -

By dividing the verse in syllables,

que o no po.dréis de lás.ti.ma es.cu.char.me

we can easily realize that the assignment of the stresses directly to each
syllable will leave syllables without assigning any stress value. This is evident
because there are 13 syllables in the verse and in the metrical values there
are 11 elements (It is a hendecasyllable). This is the input to our heuristic,
a verse and a sequence of stresses.

By applying synaloepha to the poem above, the stresses would be as-
signed in this way:

que o nO po.drÉis de lÁs.ti.ma es.cu.chAr.me

The main goal is to add unstressed syllables in a way that the stressed
syllables will be kept. Hence, for the above example a possible solution is

- - + - + - + - - - - + -

where each syllable is marked with a level of stress, although, obviously, the
time spent to produce the syllables involved in synaloephas is much shorter.
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Implementation details

As the corpus of Spanish poetry is not syllabified we had to apply a syl-
labification algorithm for Spanish written in foma?, a finite state toolkit
and library, and is mostly based on the syllabification procedure presented
in Agirrezabal et al. [2012b], which relies on the maximum onset princi-
ple together with the sonority hierarchy. Once the corpus is syllabified, we
count the number of syllables and compare it with the length of the metrical
tagging.

NOSYLLABLES == NOSTRESSES (589 cases)

If the number of syllables in the line and the number of stresses in the
metrical tagging is equal, this means that there is no need of synaloepha, so
the metrical values will be returned directly. We have observed 589 cases in
our corpus.

NOSYLLABLES != NOSTRESSES (1332 cases)

If the number of syllables and the number of stresses is not the same (1332
verses), some changes must be made:

1. If the number of syllables is higher than the number of stresses: Some
syllables must be joined, by using synaloepha (1312 verses).

2. If the number of stresses is higher than the number of syllables: It is
a special case that we did not expect (20 verses) and will have to be
resolved by hand.

In the first case, we calculate the potential synaloephas that can be
made in the verse. Firstly we try to perform synaloepha without including
the words that start with the letter ’h’ [?, p. 26]. If performing all the allowed
synaloephas the number of syllables is equal to the metrical syllables, then a
solution can be given. This happens in 1166 cases. For example, in the case

no sé ya qué ha.cer.me en mal ta.ma.ño
+ + + + - + - + - + -

the synaloepha between the syllables me and en will be chosen and the
syllables involving the synaloepha will be unstressed. If making this changes,
the number of syllables and the metrical structures length do not coincide,
we may need more changes. In such case, synaloephas involving the letter
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‘h’ are performed, which in the corpus there are 146 cases. E.g. in the next
example,

en es.te in.cen.dio her.mo.so que par.ti.do
- + - + - + - - - + -

performing contraction between the syllables te and in will not suffice be-
cause the verse still has 12 syllables. Because of that, we apply synaloephas
that include the letter ’h’ at the beginnning, so the syllables dio and her
will be joined. The resulting analysis will be this:

en Es.te in.cEn.dio her.mO.so que par.tI.do

Until now, we have seen cases in which making all possible contractions
we could assign perfectly the stresses to each syllable. Unfortunately, it is
not so straighforward in all the cases. In the verse

y es.tre.cho cuan.do es.tu.vo so.bre mı́
- + - - - + - - - + -

there are 12 syllables and two possible synaloephas that can be made. We
could join y and es or do and es. In these cases where there are two possi-
ble synaloephas, we first generate the possible scansions and evaluate them
according to the lexical stress sequence of the verse. We calculate the sim-
ple edit distance between the two strings by using only substitution. The
lexical stress sequence, the possible scansions and the distances can be seen
in table A.1. For the calculation of the lexical stress, we consider accented
monosyllabic words as stressed, but the ones that do not have any accent,
are tagged with a question mark, indicating that it can be either stressed or
unstressed.2

Once that we have generated the possible scansions and evaluated them,
we choose the one with the minimum edit distance (allowing only substitu-
tion) to the lexical stress sequence. If there is not only one minimum but
more, we set the verse as ambiguous and accept several scansions, such as
in the case,

si no es en ha.ber si.do yo guar.da.do
- + - - + + - + - + -

2We know that there is a weakness in the case that we have a verb like “voy” which is
not accented and it should be stressed..
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Table A.1: Possible stress sequences for the example in (XXX)

Lexical stresses ? - + - + - - + - + - +

Possibility no. 1 - + - - - - + - - - + - 8
Possibility no. 2 - + - - - + - - - - + - 8
Possibility no. 3 - - + - - - + - - - + - 6
Possibility no. 4 - - + - - - - + - - - + 2

where two possible analyses can be got:

- + - - - + + - + - + -
or

- - + - - + + - + - + -

Special cases + error analysis

Although the algorithm seems to be correct in multiple cases, there are still
some verses in which it can not give a correct solution. Some weaknesses
come from the ambiguity of the syllable division process. For instance, in
this poem by Góngora,

Este ćıclope, no siciliano,
del microcosmo śı, orbe postrero;

esta ant́ıpoda faz, cuyo hemisferio
zona divide en término italiano;

even the rhyming part does not coincide in the rhythmic pattern (first and
last lines), which makes (practically) impossible for the machine to calculate
correctly the stress structure of the first verse. In the case of the words
including the vowel sequence ’ue’ or ’ia’ it can be considered a dipthong or
not, for example, “cru.e.les” and “pue.do”. There are some singular cases in
which triphthongs must be made, and we have not covered such cases, e.g.,
“Eres robusto escándalo a orgullosa”, where the pronunciation should be
“es.cán.da.lo a or.gu.llo.sa”. We analyzed the results of the heuristic so that
to check its correctness and fix errors. The main source of errors was that
sometimes a triple vowel synaloepha must be made, for which our heuristic
is not prepared. Fortunately, this is not very common in this corpus, so it
can be resolved manually. Last but not least, we should mention that we
have not found a solution for the 20 verses that will need to be resolved by
hand.



144 Heuristic for Spanish poetry

At the end, we also realized that our rule-based syllabifier did not per-
form perfectly, as we expected. It does not divide a word if the left sylla-
ble ends with ”ns” and the second starts with anything (we have seen the
cases like ”instante”→ ”instan.te” and ”inscripción”→ ”inscrip.ción”). We
should fix the syllabifier as soon as possible to avoid future errors.

confianza → con.fianza
halagüeña → ha.lagüe.ña (ü is the problem)

Discussion

In this document a heuristic for the modification of a metrically annotated
corpus has been presented. The heuristic has some weaknesses, but we think
that it can help us in the transformation of the Spanish corpus so that we can
apply Machine Learning tools as we did in the case of the corpus in English.
Now the main important task is to convert the corpus and manually check
the correctness of the generated sequences so that we know the validity of
the heuristic.
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Heuristic for calculating the weight of a syllable in
several languages

This function returns 1 if the syllable is heavy and 0 if the syllable is not
heavy. It works with a simple heuristic. If the syllable ends in a consonant it
will be heavy. If the nucleus of the syllable is a diphthong, it will be heavy
too. Otherwise, we will return 0.

Listing B.1: Heuristic to find if a syllable is heavy or not.

1 diphs =[]

2

3 def isheavy( str ):
4 i f str [-1] in ’bcdfghjklmnpqrstvxyz ’: --If the syllable

ends in consonant , it i s heavy

5 return ’1’

6 e l i f re.sub("[^ aeiou]","", str ) in diphs: --If the

nucleus (syllable without consonants) i s a diphthong

, it i s heavy

7 return ’1’

8 else : --Then , i f neither of the previous conditions are

satisfied , the syllable i s light

9 return ’0’

Diphthongs are calculated from raw text simply by the following algo-
rithm:
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languages

Listing B.2: Simple heuristic to extract diphthongs from a text corpus.

1 import sys

2 import re

3

4 f=open(sys.argv [1])
5 lines = [re.sub("[^a-z\ ]", "", line.decode("utf8").rstrip

().lower ()) for line in f]

6 f.close()

7

8 def removeChars (w):

9 return re.sub("[^aeiou]", "", w)

10

11 nuclei =[]

12 for line in lines:

13 nuclei=nuclei+re.split("[^aeiou]", line)

14

15 sortedset=sorted([i for i in l i s t ( set(nuclei)) i f ( len(i)<3

and len(i) >1)])

16

17 print sortedset

18 print ’,’.join(sortedset)
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