SCIE clase 1

The DISRPT 2019 Shared Task on Elementary Discourse UnitSegmentation and Connective Detection

In 2019, we organized the first iteration of a shared task dedicated to the underlying units used in discourse parsing across formalisms: the DISRPT Shared Task on Elementary Discourse Unit Segmentation and Connective Detection. In this paper we review the data included in the task, which cover 2.6 million manually annotated tokens from 15 datasets in 10 languages, survey and compare submit-ted systems and report on system performance on each task for both annotated and plain-tokenized versions of the data.

Multilingual segmentation based on neural networks and pre-trained word embeddings

The DISPRT 2019 workshop has organized a shared task aiming to identify cross-formalism and multilingual discourse segments. Elementary Discourse Units (EDUs) are quite similar across different theories. Segmentation is the very first stage on the way of rhetorical annotation. Still, each annotation project adopted several decisions with consequences not only on the annotation of the relational discourse structure but also at the segmentation stage. In this shared task, we have employed pre-trained word embeddings, neural networks (BiLSTM+CRF) to perform the segmentation.

Towards discourse annotation and sentiment analysis of the Basque Opinion Corpus

Discourse information is crucial for a better understanding of the text structure and it is also necessary to describe which part of an opinionated text is more relevant or to decide how a text span can change the polarity (strengthen or weaken) of other spans by means of coherence relations. This work presents the first results on the annotation of the Basque Opinion Corpus using Rhetorical Structure Theory (RST).

Orriak

RSS - SCIE  clase 1-rako harpidetza egin